244 research outputs found
Enhanced photoluminescence of organic dyes embedded in sol-gel organosilane thin films
We investigated photoluminescence properties of Dyomics dyes DY650 and DY831 when incorporated into solid thin films fabricated using two distinct sol–gel precursors, namely, tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). Surprisingly, a significant enhancement in both photoluminescence lifetime and quantum yield was observed in the films derived from GPTMS, contrasting conventional behavior documented in literature for dyes dispersed within solid matrices. This phenomenon is attributed to the unique molecular environment surrounding the dyes in the GPTMS matrix, which was inferred to suppress nonradiative decay channels for the photoexcited dyes. Our findings provide valuable insights into the intricate interplay between dye molecules and their host matrices, shedding light on the potential applications of GPTMS-based systems in enhancing photoluminescence properties for various technological advancements
Band structure and optical properties of opal photonic crystals
A theoretical approach for the interpretation of reflectance spectra of opal
photonic crystals with fcc structure and (111) surface orientation is
presented. It is based on the calculation of photonic bands and density of
states corresponding to a specified angle of incidence in air. The results
yield a clear distinction between diffraction in the direction of light
propagation by (111) family planes (leading to the formation of a stop band)
and diffraction in other directions by higher-order planes (corresponding to
the excitation of photonic modes in the crystal). Reflectance measurements on
artificial opals made of self-assembled polystyrene spheres are analyzed
according to the theoretical scheme and give evidence of diffraction by
higher-order crystalline planes in the photonic structure.Comment: to appear in PR
A Combined Ion Implantation/Nanosecond Laser Irradiation Approach towards Si Nanostructures Doping
The exploitation of Si nanostructures for electronic and optoelectronic devices depends on their electronic doping. We investigate a methodology for As doping of Si nanostructures taking advantages of ion beam implantation and nanosecond laser irradiation melting dynamics. We illustrate the behaviour of As when it is confined, by the implantation technique, in a SiO2/Si/SiO2multilayer and its spatial redistribution after annealing processes. As accumulation at the Si/SiO2interfaces was observed by Rutherford backscattering spectrometry in agreement with a model that assumes a traps distribution in the Si in the first 2-3 nm above the SiO2/Si interfaces. A concentration of 1014 traps/cm2has been evaluated. This result opens perspectives for As doping of Si nanoclusters embedded in SiO2since a Si nanocluster of radius 1 nm embedded in SiO2should trap 13 As atoms at the interface. In order to promote the As incorporation in the nanoclusters for an effective doping, an approach based on ion implantation and nanosecond laser irradiation was investigated. Si nanoclusters were produced in SiO2layer. After As ion implantation and nanosecond laser irradiation, spectroscopic ellipsometry measurements show nanoclusters optical properties consistent with their effective doping
Porous silicon bragg reflector and 2D gold-polymer nanograting: a route towards a hybrid optoplasmonic platform
Photonic and plasmonic systems have been intensively studied as an effective means to modify and enhance the electromagnetic field. In recent years hybrid plasmonic–photonic systems have been investigated as a promising solution for enhancing light-matter interaction. In the present work we present a hybrid structure obtained by growing a plasmonic 2D nanograting on top of a porous silicon distributed Bragg reflector. Particular attention has been devoted to the morphological characterization of these systems. Electron microscopy images allowed us to determine the geometrical parameters of the structure. The matching of the optical response of both components has been studied. Results indicate an interaction between the plasmonic and the photonic parts of the system, which results in a localization of the electric field profile
The restoration of the Colosso di Barletta: EDXRF analysis
The Colosso di Barletta is an imposing outdoor bronze statue, dating back the V century, located near the Basilica of “Santo Sepolcro” in Barletta (Apulia, Southern Italy). The monument underwent a structural restoration in 1981, during which the Central Institute of Restoration in Rome performed cleaning treatments and consolidation of the patinas. Currently, the Laboratory of Archaeometry of the University of Salento is carrying on a campaign of non-destructive and in situ measurements by using energy dispersion X-ray fluorescence (EDXRF) in order to assess the chemical composition of the alloy and to study its patinas
Synergic combination of the sol-gel method with dip coating for plasmonic devices
Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol-gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip
Existence of Heavy Fermions in the Antiferromagnetic Phase of CeIn3
We report the pressure-dependent optical conductivity spectra of a heavy
fermion (HF) compound CeIn3 below the Neel temperature of 10 K to investigate
the existence of the HF state in the antiferromagnetic (AFM) phase. The peak
due to the interband transition in the hybridization gap between the conduction
band and nearly localized 4f states (c-f hybridization) appears at the photon
energy of about 20 meV not only in the HF regime but also in the AFM regime.
Both the energy and intensity of the c-f hybridization peak continuously
increase with the application of pressure from the AFM to the HF regime. This
result suggests that the c-f hybridization, as well as the heavy fermions,
exists even in the AFM phase of CeIn3.Comment: 5 pages, 3 figure
Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3
The optical properties of the heavy-fermion compound UPdAl have been
measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm) at
temperatures K. Below the coherence temperature K, the hybridization gap opens around 10 meV. As the temperature decreases
further ( K), a well pronounced pseudogap of approximately 0.2 meV
develops in the optical response; we relate this to the antiferromagnetic
ordering which occurs below K. The frequency dependent mass and
scattering rate give evidence that the enhancement of the effective mass mainly
occurs below the energy which is associated to the magnetic correlations
between the itinerant and localized 5f electrons. In addition to this
correlation gap, we observe a narrow zero-frequency conductivity peak which at
2 K is less than 0.1 meV wide, and which contains only a fraction of the
delocalized carriers. The analysis of the spectral weight infers a loss of
kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure
Infrared and optical spectroscopy of alpha and gamma-phase Ce
We determined the optical properties of alpha- and gamma-phase Ce in the
photon energy range from 60 meV to 2.5 eV using ellipsometry and grazing
incidence reflectometry. We observe significant changes of the optical
conductivity, the dynamical scattering rate, and the effective mass between
alpha- and gamma-cerium. The alpha-phase is characterized by Fermi-liquid
frequency dependent scattering rate, and an effective mass of about 20 m_e on
an energy scale of about 0.2 eV. In gamma-Ce the charge carriers have a large
scattering rate in the far infrared, and a carrier mass characteristic of 5d
band electrons. In addition we observe a prominent absorption feature in
alpha-Ce, which is absent in gamma-Ce, indicating significant differences of
the electronic structure between the two phases.Comment: 5 pages, REVTeX, 2 eps-figures, Phys.Rev.Lett., in pres
Optical study of the electronic phase transition of strongly correlated YbInCu_4
Infrared, visible and near-UV reflectivity measurements are used to obtain
conductivity as a function of temperature and frequency in YbInCu_4, which
exhibits an isostructural phase-transition into a mixed-valent phase below
T_v=42 K. In addition to a gradual loss of spectral weight with decreasing
temperature extending up to 1.5 eV, a sharp resonance appears at 0.25 eV in the
mixed-valent phase. This feature can be described in terms of excitations into
the Kondo (Abrikosov-Suhl) resonance, and, like the sudden reduction of
resistivity, provides a direct reflection of the onset of coherence in this
strongly correlated electron system.Comment: 4 pages, 3 figures (to appear in Phys. Rev. B
- …