102 research outputs found

    comparison between thermal energy and acoustic emission for the fatigue behavior of steels

    Get PDF
    Abstract The paper is focused on the study of fatigue materials, using an energy approach, with the support of two different non-destructive techniques. Indeed, the analysis of the energy behavior was conducted by the simultaneous application of Acoustic Emission (AE) and Thermography (TH). The purpose of the paper was to compare and integrate the results obtained by the two methodologies to assess the fatigue behavior of materials. The experimental tests were carried out on flat steel specimens of steels commonly used for metal carpentry either under static loading or under sequences of increasing cyclic loading. The results allow to define the fatigue limit either by the thermography or by the acoustic emission and they are encouraging to continue the comparison and the integration between the two energetic methodologies

    Influence of heat-treatment on torsional resistance to fracture of Nickel-Titanium endodontic instruments

    Get PDF
    AbstractOver the past 3 decades, Nickel-Titanium (NiTi) instruments have become an important part of the armamentarium for shaping phase of root canal treatment. NiTi endodontic files have increased flexibility and strength compared with stainless steel instruments, but they seem to be vulnerable to fracture in clinical situations. Many variables might contribute to file separation, but the 2 main causes are cyclic fatigue and torsional stress. Heat treatment (thermal processing) is one of the most fundamental approaches toward adjusting the transition temperatures of NiTi alloys and affecting the fatigue and torsional resistance of NiTi endodontic files. In recent years, novel thermo-mechanical processing and manufacturing technologies such as controlled memory wire (CM-wire), M-Wire and electrical discharge machining (EDM) have been developed to optimize the microstructure of NiTi alloys and their mechanical properties. Aim of this work was to investigate the torsional resistance (maximum torque load, and angular rotation) of NiTi instruments made by different thermo-mechanical and manufacturing processes.One-hundred new Hyflex EDM One- File (#25/0.08, CM-wire and EDM process), WaveOne Primary (#25/0.08, M-wire), ProTaper Next X2 (#25/0.06, M-wire), Hyflex CM (#25/0.06, CM-wire) and F6 SkyTaper(#25/0.06, conventional NiTi) files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured using a torsiometer according to ISO 3630-1 for each brand. Data were analyzed using the analysis of variance test and the Student- Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope.Files made by CM wire size #25, 0.06 taper (Hyflex CM) showed same torque load and angular rotation to fracture than conventional NiTi (F6 SkyTaper) (P > .05); instead CM files (manufacturing by grinding or EDM process) recorded lower maximum torque load (P .05) but significantly higher angular rotation (P < .05) to fracture than M-wire instruments size #25, 0.06 taper (ProTaper Next).Hyflex EDM One-File and Hyflex CM have same torque load and angular rotation to fracture than F6 SkyTaper due to the higher flexibility and cross-sectional area of CM files tested than conventional NiTi one.Moreover CM files showed lower torque load and higher angular rotation to fracture than M-wire instruments due to the flexibility of CM alloy. M-wire instruments showed same torque load but significantly lower angular rotation than conventional NiTi files due to the same flexibility and higher cross-sectional area of the files tested

    Hydrogen induced optically-active defects in silicon photonic nanocavities

    Get PDF
    This work was supported by Era-NET NanoSci LECSIN project coordinated by F. Priolo, by the Italian Ministry of University and Research, FIRB contract No. RBAP06L4S5 and by the EPSRC UKSp project. Partial financial support by the Norwegian Research Council is also acknowledged.We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.Publisher PDFPeer reviewe

    The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica

    Get PDF
    The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics

    Violent behavior of patients living in psychiatric residential facilities: A comparison of male patients with different violence histories

    Get PDF
    People with severe mental disorders and a history of violence are often seen as a difficult-to-manage segment of the population. In addition, this group is usually characterized by a high risk of crime recidivism, and poor compliance with community and aftercare programs. To investigate a sample of male patients living in Residential Facilities (RFs) with a history of violent behavior against people and to compare their characteristics with those of never-violent residents; to analyze the associations between aggressive behaviors in the last two years and a history of previous violence; and, to assess the predictors of aggressive behaviors. This study is part of a prospective observational cohort study which involved 23 RFs in Northern Italy. A comprehensive set of sociodemographic, clinical, and treatment-related information was gathered, and standardized assessments were administered to each participant. Also a detailed assessment of aggressive behaviors in the past two years was carried out. The study involved 268 males: 81 violent and 187 never-violent. Compared to never-violent patients, violent patients were younger, with a higher proportion of personality disorders, and have displayed an increased number of aggressive behaviors in the last two years. The presence of a history of violent behavior in the past significantly increases the probability of committing aggressive acts in the future

    The effect of service satisfaction and spiritual well-being on the quality of life of patients with schizophrenia.

    Get PDF
    Quality of life (QOL) has been considered an important outcome measure in psychiatric research and determinants of QOL have been widely investigated. We aimed at detecting predictors of QOL at baseline and at testing the longitudinal interrelations of the baseline predictors with QOL scores at a 1-year follow-up in a sample of patients living in Residential Facilities (RFs). Logistic regression models were adopted to evaluate the association between WHOQoL-Bref scores and potential determinants of QOL. In addition, all variables significantly associated with QOL domains in the final logistic regression model were included by using the Structural Equation Modeling (SEM). We included 139 patients with a diagnosis of schizophrenia spectrum. In the final logistic regression model level of activity, social support, age, service satisfaction, spiritual well-being and symptoms' severity were identified as predictors of QOL scores at baseline. Longitudinal analyses carried out by SEM showed that 40% of QOL follow-up variability was explained by QOL at baseline, and significant indirect effects toward QOL at follow-up were found for satisfaction with services and for social support. Rehabilitation plans for people with schizophrenia living in RFs should also consider mediators of change in subjective QOL such as satisfaction with mental health services

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate

    Constraints on the structure and seasonal variations of Triton’s atmosphere from the 5 October 2017 stellar occultation and previous observations⋆

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range ∌8 km to ∌190 km, corresponding to pressure levels from 9 ÎŒbar down to a few nanobars. Results. (i) A pressure of 1.18 ± 0.03 ÎŒbar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 ÎŒbar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude
    • 

    corecore