418 research outputs found

    A Damage Identification procedure based on Hilbert transform: experimental validation

    Get PDF
    This paper aims at validating the feasibility of an identification procedure, based on the use of the Hilbert transform, by means of experimental tests for shear-type multi-degree-of-freedom systems. Particularly, a three-degree-of-freedom frame will be studied either numerically or experimentally by means of a laboratory scale model built at the laboratory of the Structural, Aerospace and Geotechnical Engineering Department (DISAG) of University of Palermo. Several damage scenarios have been considered to prove the effectiveness of the procedure. Moreover, the experimental tests have been conducted by considering two different input loads: pulse forces, simulated by means of an instrumental hammer, and wide band noise base inputs, by a shake table. In the first section the damage identification procedure, proposed in recent works, is presented. The procedure is based on the minimization of an objective function mathematically based on the properties of the analytical signal and the Hilbert transform. Second section reports the experimental model geometrical data and the data acquisition set-up as built in the DISAG laboratory. In Section 3, the results of the experimental campaigns are presented and discussed having considered three damage scenarios. The validated procedure has been proved to be able to not only detect damage even at early stage but it also needs processing of only few samples of the structural respons

    ANATOMICAL VARIATIONS OF THE INTERNAL JUGULAR VEIN: THE ROLE OF ULTRASONOGRAPHY

    Get PDF
    Purpose: In many places, especially in emergency department, central venous catheter is still inserted using anatomical landmark guidance with a success rate up to 97.6% and complications up to 15%. This study was aimed to determine by the support of ultrasono-graphy (US) the anatomical variations of the internal jugular vein (IJV) in relation with other structures of the neck, such as the common carotid artery (CCA). Material and Methods: 830 patients requiring central vein catheterization (CVC) were in-cluded in the analysis. The position of the IJV in relation to the other structures of the neck was demonstrated by portable ultrasonography. Results: The mean diameter of IJV was 10.3 mm in right and 10.5 mm in left side of neck, in male (p > 0.05) and 9.1 mm in right and 10.5 mm in left side of neck, in female (p > 0.05). The mean distance between IJV and CCA was 1.9 mm in right and 1.7 mm in left side of neck in male, and 2.0 mm in right and 2.2 mm in left side of neck in female. The mean distance of IJV from the skin surface was 9.8 mm in right and 10.0 mm in left side of neck in male, and 12.1 mm in right and 12.5 mm in left side of neck in female. On 25.54 % we observed variations of internal jugular vein site. On 3.97 % we observed a small caliber of internal jugular vein that could complicate the catheterization of the vein. On 1.8 % was diagnosed a thrombus of internal jugular vein, that is considered as an ab-solute contraindication for a CVC. Conclusion: Different patients had anatomical variations that are important and should be knowed, in order to reduce the possibility of severe complication

    Gamma-hydroxybutyrate (GHB) for prevention and treatment of alcohol withdrawal

    Get PDF
    This is the protocol for a review and there is no abstract. The objectives are as follows: To evaluate the efficacy and safety of GHB in prevention and treatment of the AWS, more specifically • to compare the efficacy of GHB with placebo or other drugs; • to identify the most effective GHB dosage and schedules; • to estimate the incidence of side effects; • to carry out a risk-benefit analysis

    Thoracoscopy in pleural effusion –two techniques: awake single-access video-assisted thoracic surgery versus 2-ports video-assisted thoracic surgery under general anesthesia

    Get PDF
    Awake single access video-assisted thoracic surgery with local anesthesia improves procedure tolerance, reduces postoperative stay and costs. MATERIALS & METHODS: Local anesthesia was made with lidocaine and ropivacaine. We realize one 20 mm incision for the 'single-access', and two incisions for the '2-trocars technique'. RESULTS: Mortality rate was 0% in both groups. Postoperative stay: 3dd ± 4 versus 4dd ± 5, mean operative time: 39 min versus 37 min (p < 0.05). Chest tube duration: 2dd ± 5 versus 3dd ± 6. COMPLICATIONS: 11/95 versus 10/79. CONCLUSION: Awake technique reduce postoperative hospital stay and chest drainage duration, similar complications and recurrence rate. The authors can say that 'awake single-access VATS' is an optimal diagnostic and therapeutic tool for the management of pleural effusions, but above extends surgical indication to high-risk patients

    Organizational life cycle assessment: suitability for higher education institutions with environmental management systems

    Full text link
    [EN] Purpose The purpose of this study is to analyze the suitability of organizational life cycle assessments (O-LCAs) for higher education institutions (HEIs) with special attention to the benefits and particularities of those adopting environmental management systems (EMSs) verified according to Environmental Management and Audit Scheme (EMAS). Methods A thorough analysis following ISO/TS 14072 and UNEP Guidance was carried out using the Universitat Politècnica de València (UPV) EMS verified by the EMAS for guiding principles to develop the methodological proposal. The self-sufficiency of UPV EMS for developing an O-LCA was tested at the university pilot unit. The four steps of the O-LCA were applied to the pilot. Results and discussion A reporting organization, the organization to be studied (boundaries and scope), was defined in consideration of the environmental units (EU) of the EMS. Operational control was selected as a consolidation method. Reporting flows and system boundaries are also discussed. A three-scope scheme of the GHG protocol is introduced and combined with the ISO 14072 boundary definition to support better alignment with the HEI structure. For the life cycle inventory analysis, a mechanism for identifying activities and processes as well as their material and energy flows is proposed in consideration of the particularities of HEIs. A procedure for the prioritization of data collection efforts and cutoffs was developed. The procedure integrates current EMAS actions based on the significance of environmental aspects combined with the influence of reporting organizations under their control. Impact categories focus on midpoint indicators along with an additional inventory level indicator as part of the life cycle impact assessment (LCIA). Unfortunately, due to a lack of quality data available, LCIA can only be assessed in part with little interest in outcomes. Partial results are presented. Conclusions An EMS verified by EMAS is proven to be useful in the assessment of O-LCA for HEIs. However, EMAS requirements do not ensure the availability of all data needed to develop an O-LCA. An accounting system should complement a lack of data if it is properly structured. Considerable efforts are required to obtain an accurate result. EMS and the accounting system may be able to provide information that supports an O-LCA approach based on a coherent prioritization of data collection efforts and cutoff procedures along with a set of justified impact category indicators. Overall, organization managers must be in favor of such an assessment to meet the requirements of successful implementation.Lo-Iacono-Ferreira, VG.; Torregrosa López, JI.; Capuz-Rizo, SF. (2017). Organizational life cycle assessment: suitability for higher education institutions with environmental management systems. International Journal of Life Cycle Assessment. 22(12):1928-1943. doi:10.1007/s11367-017-1289-8S192819432212Braunschweig A (2014) GHG-balances and LCA: applying the concept of scopes in organisational LCAs. E2 Management Consulting http://www.e2mc.com Accessed 1 July 2016Clift R, Wright L (2000) Relationships between environmental impacts and added value along the supply chain. Technol Forecast Soc 65(3):281–295Cortese AD (2003) The critical role of higher education in creating a sustainable future. Planning for higher education. Retrived from http://www.aashe.org/documents/resources/pdf/Cortese_PHE.pdf . Accessed 1 June 2016Curran MA (2017) Goal and scope definition in life cycle assessment. Springer. doi: 10.1007/978—94-024-0855-3Disterheft A, da Silva Caeiro SSF, Ramos MR, de Miranda Azeiteiro UM (2012) Environmental Management Systems (EMS) implementation processes and practices in European higher education institutions—top-down versus participatory approaches. J Clean Prod 31:80–90Draucker L (2013) GHG Protocol: moving Corporate Accounting Beyond GHGs. Abstract Book: SETAC North American 34th Annual Meeting, Nashville, USAEC (2013) European Commission Organization Environmental Footprint Guide. European Commission-Joint Research Centre-Institute for Environment and Sustainability http://eur-lex.europa.eu/JOHtml.do?uri=OJ:L:2013:124:SOM:EN:HTML Accessed 1 June 2016EC (2016) European Commission Environment. Eco-Management and Audit Scheme http://ec.europa.eu/environment/emas/ Accessed 1 June 2016Finkbeiner M, Wiedemann M, Saur K (1998) A comprehensive approach towards product and organisation related environmental management tools. Int J Life Cycle Assess 3(3):169–178Fleischer G, Gerner K, Kunst H, Lichtenvort K, Rebitzer G (2001) A semi-quantitative method for the impact assessment of emissions within a simplified life cycle assessment. Int J Life Cycle Assess 6(3):149–156GRI (2005) GRI Boundary Protocol. Global Reporting Initiative. https://www.globalreporting.org/resourcelibrary/GRI-Boundary-Protocol.pdf Accessed 1 June 2016Hauschild MZ, Huijbregts MA (2015) Introducing life cycle impact assessment. In: Hauschild MZ, Huijbregts MAJ (eds) Life cycle impact assessment, LCA compendium—the complete world of life cycle assessment. Springer Science+Business Media, Dordrecht 2015. doi: 10.1007/978-94-017-9744-3_1Hellweg S, Milà i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344(6188):1109–1113Hochschorner E, Finnveden G (2003) Evaluation of two simplified life cycle assessment methods. Int J Life Cycle Assess 8(3):119–128Huang YA, Lenzen M, Weber CL, Murray J, Matthews HS (2009) The role of input-output analysis for the screening of corporate carbon footprints. Econ Systems Res 21(3):217–242ISO (2004) Environmental management systems—requirements with guidance for use ISO 14001: 2004. International Organization for Standardization, GenevaISO (2006a) ISO 14040: environmental management—life cycle assessment—principles and framework. International Organization for Standardization, GenevaISO (2006b) ISO 14044: environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization, GenevaISO (2014) ISO/TS 14072: environmental management—life cycle assessment—requirements and guidelines for organizational life cycle assessment. International Organization for Standardization, GenevaJolliet O, Frischknecht R, Bare J, Boulay AM, Bulle C, Fantke P, Weisbrod A (2014) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. Int J Life Cycle Assess 19(4):962–967Lave LB, Cobas-Flores E, Hendrickson CT, McMichael FC (1995) Using input-output analysis to estimate economy-wide discharges. Environ Sci Technol 29(9):420A–426ALife Cycle Initiative (2016) http://www.lifecycleinitiative.org/ Accessed 22 June 2016Lo-Iacono-Ferreira V, Torregrosa-López JI, Lora García J, Bastante-Ceca MJ, Capuz-Rizo SF (2011) Study of the inclusion of life cycle assessment impact categories in ecological footprint. XV International Congress of Project Engineering. ISBN: 978-84-615-4543-8Lo-Iacono-Ferreira VG, Torregrosa-López JI, Capuz-Rizo SF (2016a) Use of life cycle assessment methodology in the analysis of ecological footprint assessment results to evaluate the environmental performance of universities. J Clean Prod 133:43–53Lo-Iacono-Ferreira VG, Capuz-Rizo SF, Torregrosa-López JI (2016b) Ecological Footprint Assessment of Higher Education applying Life Cycle Assessment framework. Case study: Universitat Politència de València. XX International Congress on Project Management and Engineering, Cartagena, p 1423–1432. http://www.aeipro.com/aplic/tree_congresos/detalle_remository_aeipro.php?file=4636Lozano R (2006) Incorporation and institutionalization of SD into universities: breaking through barriers to change. J Clean Prod 14(9):787–796. doi: 10.1016/j.jclepro.2005.12.010Lozano García FJ, Kevany K, Huisingh D (2006) Sustainability in higher education: what is happening? J Clean Prod 14(9):757–760. doi: 10.1016/j.jclepro.2005.12.006Lozano R (2011) The state of sustainability reporting in universities. Int J Sust Higher Ed 12(1):67–78Manzardo A, Loss A, Mazzi A, Scipioni A, (2016) Organizational life-cycle assessment (OLCA): methodological issues and case studies in the beverage-packaging sector. Environmental footprints of packaging. Springer. doi: 10.1007/978-981-287-913-4Martínez-Blanco J, Inaba A, Finkbeiner M (2015a) Halfway point in the flagship project LCA of organizations by UNEP/SETAC life cycle initiative. Int J Life Cycle Ass Japan 11:1–7Martínez-Blanco J, Inaba A, Quiros A, Valdivia S, Milà-i-Canals L, Finkbeiner M (2015b) Organizational LCA: the new member of the LCA family—introducing the UNEP/SETAC life cycle initiative guidance document. Int J Life Cycle Assess 20(8):1045–1047Martínez-Blanco J, Inaba A, Finkbeiner M (2015c) Scoping organizational LCA—challenges and solutions. Int J Life Cycle Assess 20(6):829–841Pelletier N, Allacker K, Pant R, Manfredi S (2013) The European Commission Organisation Environmental Footprint method: comparison with other methods, and rationales for key requirements. Int J Life Cycle Assess 19(2):387–404Resta B, Gaiardelli P, Pinto R, Dotti S (2016) Enhancing environmental management in the textile sector: an organisational-life cycle assessment approach. J Clean Prod 135:620–632Taylor AP, Postlethwaite D (1996) Overall business impact assessment (OBIA). In: Proceedings of the 4th SETAC Case Study Symposium. SETAC, Brussels, Belgium Brussels, 181–187Tlapa DA, Limón J, Báez YA (2009) Quality and environmental management in higher education institutes by integrating ISO 9001 and ISO 14001. Form Univ 2(2):35–46Torregrosa-López JI, Lo-Iacono-Ferreira V, Martí-Barranco C, Bellver-Navarro CG (2016) The strengths of EMAS as an environmental management system for European university campuses. Int J Environ Sust Dev 15(1):89–106UNEP (2015) Guidance on organizational life cycle assessment. Life-Cycle Initiative, United Nations Environment Programme and Society for Environmental Toxicology and Chemistry, Paris, France. http://www.lifecycleinitiative.org/wp- content/uploads/2015/04/o-lca_24.4.15-web.pdf Accessed 1 June 2016Vivancos Bono JL (2005) Propuesta Metodológica para la Simplificación del ACV en su Aplicación a los Componentes Plásticos del Automóvil en el Marco del Ecodiseño. Ed. Universidad Politécnica de ValenciaWatkins P, Glover A (2016) Future generations: developing education for sustainability and global citizenship for university education students. In: Leal Filho W, Pace L (ed) Teaching education for sustainable development at university level. Springer International Publishing, pp 67–81. doi: 10.1007/978-3-319-32928-4_5WRI and WBCSD (2011) Corporate Value Chain (Scope 3) Accounting and Reporting Standard—Supplement to the GHG Protocol Corporate Accounting and Reporting Standard. World Resources Institute and World Business Council for Sustainable Development. http://www.ghgprotocol.org/files/ghgp/public/Corporate-Value-Chain-Accounting-Reporing-Standard_041613.pdf . Accesse

    Key Performance Indicators to optimize the environmental performance of Higher Education Institutions with environmental management system - A case study of Universitat Politècnica de València

    Full text link
    [EN] Environmental performance is becoming increasingly important to organizational decision-making boards. As with other organizations, Higher Education Institutions concerned with environmental performance require tools to help develop appropriate policies and programs. Key Performance Indicators are typically a component of economic and financial decision-making. Defining Key Performance Indicators for relevant environmental aspects of an institution can be seen as a step toward integrating environmental issues into overall management. In this paper, a methodology is proposed to define environmental Key Performance Indicators for Higher Education Institutions with a robust Environmental Management System (International Organization for Standardization (ISO) certified or Eco-Management and Audit Scheme (EMAS) verified), and this methodology is coupled with a validation system based on meta-performance evaluation indicators. The proposal is based on the relative significance of various environmental aspects and the degree of operational control that an organization has over each aspect. The methodology is developed to be easy to applied, minimum time and resource consumption) and integrate in an existent Environmental Management System. It starts with a standard procedure to define the organization allowing its application to any type of Higher Education Institution. Additionally, a list of over 140 environmental indicators, described and classified, is offered. An environmental unit, Escuela Politecnica Superior de Alcoy (EPSA), of Universitat Politecnica de Valencia, EMAS verified, is used as a case study. From the study, seven Key Performance Indicators are defined, and three of these are fully assessed. Energy consumption, waste management treatment, and greenhouse gas emissions are the key elements of these three indicators. Institutions with robust Environmental Management Systems have significant advantages in identifying relevant environmental aspects and defining goals to begin defining Key Performance Indicators. However, Environmental Management Systems do not themselves ensure that data are available, nor that they are of the quality desired. In the case study, additional resources are required to generate Key Performance Indicators to assess significant environmental aspects. Securing those additional resources would benefit both the Environmental Management System and the organizational decision-makers. (C) 2018 Elsevier Ltd. All rights reserved.Lo-Iacono-Ferreira, VG.; Capuz-Rizo, SF.; Torregrosa López, JI. (2018). Key Performance Indicators to optimize the environmental performance of Higher Education Institutions with environmental management system - A case study of Universitat Politècnica de València. Journal of Cleaner Production. 178:846-865. https://doi.org/10.1016/j.jclepro.2017.12.184S84686517

    Carbon Footprint Comparative Analysis of Cardboard and Plastic Containers Used for the International Transport of Spanish Tomatoes

    Full text link
    [EN] Agricultural packaging has a direct impact on the environmental performance of food. The carbon footprint (CF) of two of the most used packaging systems for international transport by road of fruit and vegetables is assessed and compared. Corrugated cardboard boxes (CCB) and polypropylene foldable boxes (PPB) in two different sizes are the object of this study. For the reusable boxes, three different scenarios are considered regarding the number of uses of each box (20, 50, and 100 uses). Product CF ISO 14067:2018 standard is applied, and requirements of ISO 14026:2017 and ISO 14044:2006 are met for a cradle-to-grave CF analysis. Product distribution and return of the empty box are the stages with the most significant impact for PPB over the manufacturing stage. CCB that does not have any returning stage or requirements of sanitation has its main impact in manufacturing. The comparison between both packaging systems of the same size, considering the functional unit and defined scope, points out CCB has a lower CF than PPBThis research was funded by the Instituto de Produccion Sostenible (IPS, Institute for Sustainable Production) located in Madrid (Spain)Lo-Iacono-Ferreira, VG.; Viñoles-Cebolla, R.; Maria-José Bastante-Ceca; Capuz-Rizo, SF. (2021). Carbon Footprint Comparative Analysis of Cardboard and Plastic Containers Used for the International Transport of Spanish Tomatoes. Sustainability. 13(5):2552-1-2552-28. https://doi.org/10.3390/su13052552S2552-12552-2813

    Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis

    Full text link
    [EN] The increase in international trade due to globalization is evident in southeast Spain, which has become the top exporter of fruit and vegetables. Countries within the European Union, such as Germany and France, emphasize the sustainability and environmental impacts of these products. Hence, a greater understanding of the environmental implications of transporting fruit and vegetables between their origin and their destination might improve the sustainability of this commercial activity. The concept of a carbon footprint is a recognized environmental indicator that can be used for life cycle analysis. Here, a rigorous carbon footprint assessment was developed to examine the impact of using cardboard box containers to store and transport 1,000 t of fruit and vegetable products by road from their origin in Almería, Spain, to a destination market. The assessment included the fabrication of the cardboard boxes, the service they provide while transporting the products to the distribution center of the destination, and the end-of-life of the boxes for the six main products grown in Almería. The results showed that storing and transporting 1,000 t of product by road emits between 58 t and 130 t of CO2e depending on the fruit or vegetable type and the destination market. The implications of the end-of-life scenarios with respect to the destination are also discussed. Furthermore, a sensitivity analysis was conducted for the transport distance. Lastly, biogenic CO2 production was also assessed according to standard carbon footprint assessment method.Lo-Iacono-Ferreira, VG.; Viñoles-Cebolla, R.; Bastante-Ceca, M.; Capuz-Rizo, SF. (2020). Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis. Journal of Cleaner Production. 244:1-12. https://doi.org/10.1016/j.jclepro.2019.118784S112244Albrecht, S., Brandstetter, P., Beck, T., Fullana-i-Palmer, P., Grönman, K., Baitz, M., … Fischer, M. (2013). An extended life cycle analysis of packaging systems for fruit and vegetable transport in Europe. The International Journal of Life Cycle Assessment, 18(8), 1549-1567. doi:10.1007/s11367-013-0590-4Atallah, S. S., Gómez, M. I., & Björkman, T. (2014). Localization effects for a fresh vegetable product supply chain: Broccoli in the eastern United States. Food Policy, 49, 151-159. doi:10.1016/j.foodpol.2014.07.005Borsato, E., Tarolli, P., & Marinello, F. (2018). Sustainable patterns of main agricultural products combining different footprint parameters. Journal of Cleaner Production, 179, 357-367. doi:10.1016/j.jclepro.2018.01.044Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2016). Fresh food sustainable distribution: cost, delivery time and carbon footprint three-objective optimization. Journal of Food Engineering, 174, 56-67. doi:10.1016/j.jfoodeng.2015.11.014Chonhenchob, V., & Singh, S. P. (2003). A comparison of corrugated boxes and reusable plastic containers for mango distribution. Packaging Technology and Science, 16(6), 231-237. doi:10.1002/pts.630Chonhenchob, V., & Singh, S. P. (2005). Packaging performance comparison for distribution and export of papaya fruit. Packaging Technology and Science, 18(3), 125-131. doi:10.1002/pts.681Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083Finkbeiner, M. (2009). Carbon footprinting—opportunities and threats. The International Journal of Life Cycle Assessment, 14(2), 91-94. doi:10.1007/s11367-009-0064-xKaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of The Total Environment, 664, 1005-1019. doi:10.1016/j.scitotenv.2019.02.004Levi, M., Cortesi, S., Vezzoli, C., & Salvia, G. (2011). A Comparative Life Cycle Assessment of Disposable and Reusable Packaging for the Distribution of Italian Fruit and Vegetables. Packaging Technology and Science, 24(7), 387-400. doi:10.1002/pts.946Manfredi, M., & Vignali, G. (2014). Life cycle assessment of a packaged tomato puree: a comparison of environmental impacts produced by different life cycle phases. Journal of Cleaner Production, 73, 275-284. doi:10.1016/j.jclepro.2013.10.010Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Berrada, A. (2017). Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 154, 602-613. doi:10.1016/j.jclepro.2017.04.033Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Chau, K. (2017). Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - A case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 148, 427-440. doi:10.1016/j.jclepro.2017.01.172Neugebauer, S., Martinez-Blanco, J., Scheumann, R., & Finkbeiner, M. (2015). Enhancing the practical implementation of life cycle sustainability assessment – proposal of a Tiered approach. Journal of Cleaner Production, 102, 165-176. doi:10.1016/j.jclepro.2015.04.053Parajuli, R., Thoma, G., & Matlock, M. D. (2019). Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Science of The Total Environment, 650, 2863-2879. doi:10.1016/j.scitotenv.2018.10.019Pattara, C., Salomone, R., & Cichelli, A. (2016). Carbon footprint of extra virgin olive oil: a comparative and driver analysis of different production processes in Centre Italy. Journal of Cleaner Production, 127, 533-547. doi:10.1016/j.jclepro.2016.03.152Payen, S., Basset-Mens, C., & Perret, S. (2015). LCA of local and imported tomato: an energy and water trade-off. Journal of Cleaner Production, 87, 139-148. doi:10.1016/j.jclepro.2014.10.007Pérez Neira, D., Soler Montiel, M., Delgado Cabeza, M., & Reigada, A. (2018). Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Science of The Total Environment, 628-629, 1627-1636. doi:10.1016/j.scitotenv.2018.02.127Pérez-Neira, D., & Grollmus-Venegas, A. (2018). Life-cycle energy assessment and carbon footprint of peri-urban horticulture. A comparative case study of local food systems in Spain. Landscape and Urban Planning, 172, 60-68. doi:10.1016/j.landurbplan.2018.01.001Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743-750. doi:10.1016/j.jclepro.2017.02.149Röös, E., & Karlsson, H. (2013). Effect of eating seasonal on the carbon footprint of Swedish vegetable consumption. Journal of Cleaner Production, 59, 63-72. doi:10.1016/j.jclepro.2013.06.035Sanyé-Mengual, E., Cerón-Palma, I., Oliver-Solà, J., Montero, J. I., & Rieradevall, J. (2012). Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas. Journal of the Science of Food and Agriculture, 93(1), 100-109. doi:10.1002/jsfa.5736Shabanzadeh-Khoshrody, M., Azadi, H., Khajooeipour, A., & Nabavi-Pelesaraei, A. (2016). Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. Journal of Cleaner Production, 135, 549-557. doi:10.1016/j.jclepro.2016.06.145Singh, S. P., Chonhenchob, V., & Singh, J. (2006). Life cycle inventory and analysis of re-usable plastic containers and display-ready corrugated containers used for packaging fresh fruits and vegetables. Packaging Technology and Science, 19(5), 279-293. doi:10.1002/pts.731Soode, E., Lampert, P., Weber-Blaschke, G., & Richter, K. (2015). Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. Journal of Cleaner Production, 87, 168-179. doi:10.1016/j.jclepro.2014.09.035Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218-1230. doi:10.1007/s11367-016-1087-

    The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain)

    Full text link
    [EN] Maritime transport is responsible for 13% of the Greenhouse Gases (GHG) emissions of the transport sector. Port authorities, terminals, shipping companies, and other stakeholders have joined e orts to improve this sector¿s environmental performance. In Spain, the Ministry for Ecological Transition and Demographic Challenge has developed a methodology to assess the carbon footprint. This methodology has been adapted to ports and applied to processes under the Port Authority of Valencia¿s umbrella achieving scopes 1, 2, and 3. The results highlight that ship tra c, within the port, of containers and cruises (categorized in scope 3) had a major impact on the carbon footprint. Buildings lighting managed by the terminals has a significant e ect on scope 2. Diesel consumption shares with gasoline consumption the primary representation in scope 1. The carbon footprint between 2008 and 2016 was maintained, although tra c in the port increased by 24% during this period. The results show a decrease of 17% when emissions are compared using the base year¿s emissions factors to avoid external factors. Future projects that include self-consumption or renewable energy policies seem to be the next step in a port that shows good results but still has room for improvement in activities of scope 3.Authors want to thank the Valencia Port Authority for their collaboration in the data collection process. Special thanks to Federico Torres Monfort, Alicia Marti, Pilar Sanchez and Rafael Company for their support.Cloquell Ballester, VA.; Lo-Iacono-Ferreira, VG.; Artacho Ramírez, MÁ.; Capuz-Rizo, SF. (2020). The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain). International Journal of Environmental research and Public Health (Online). 17(21):1-16. https://doi.org/10.3390/ijerph17218157S1161721Visor Cartográfic de la Generalitat http://visor.gva.es/visor/Eurostat https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doEMAS Register https://webgate.ec.europa.eu/emas2/public/registration/listEnvironmental Statement 2018 https://www.valenciaport.com/wp-content/uploads/Memoria-Ambiental-2018ENG.pdfLi, Y., Wang, Y., He, Q., & Yang, Y. (2020). Calculation and Evaluation of Carbon Footprint in Mulberry Production: A Case of Haining in China. International Journal of Environmental Research and Public Health, 17(4), 1339. doi:10.3390/ijerph170413392019 Status Report. The Task Force on Climate-Related Financial Disclosures https://www.fsb-tcfd.org/publications/tcfd-2019-status-report/Jalkanen, J.-P., Johansson, L., & Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16(1), 71-84. doi:10.5194/acp-16-71-2016Carballo-Penela, A., Mateo-Mantecón, I., Doménech, J. L., & Coto-Millán, P. (2012). From the motorways of the sea to the green corridors’ carbon footprint: the case of a port in Spain. Journal of Environmental Planning and Management, 55(6), 765-782. doi:10.1080/09640568.2011.627422International Standard Organization ISO 14067:2018 Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification https://www.iso.org/standard/71206.htmlPAS 2050:2011: Specification for the Assessment of the Life Cycle Greenhouse Gas; Emissions of Goods and Services https://shop.bsigroup.com/upload/shop/download/pas/pas2050.pdfSchmalensee, R., Stoker, T. M., & Judson, R. A. (1998). World Carbon Dioxide Emissions: 1950–2050. Review of Economics and Statistics, 80(1), 15-27. doi:10.1162/003465398557294DORE, A., VIENO, M., TANG, Y., DRAGOSITS, U., DOSIO, A., WESTON, K., & SUTTON, M. (2007). Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 41(11), 2355-2367. doi:10.1016/j.atmosenv.2006.11.013Doudnikoff, M., & Lacoste, R. (2014). Effect of a speed reduction of containerships in response to higher energy costs in Sulphur Emission Control Areas. Transportation Research Part D: Transport and Environment, 27, 19-29. doi:10.1016/j.trd.2013.12.008(2011). Environmental Impacts of International Shipping. doi:10.1787/9789264097339-enHongisto, M. (2014). Impact of the emissions of international sea traffic on airborne deposition to the Baltic Sea and concentrations at the coastline⁎⁎The research has received funding from the European Regional Development Fund, Central Baltic INTERREG IV A programme within the SNOOP project. Oceanologia, 56(2), 349-372. doi:10.5697/oc.56-2.349Lee, P. T. ‐W., Hu, K., & Chen, T. (2010). External Costs of Domestic Container Transportation: Short‐Sea Shipping versus Trucking in Taiwan. Transport Reviews, 30(3), 315-335. doi:10.1080/01441640903010120Medda, F., & Trujillo, L. (2010). Short-sea shipping: an analysis of its determinants. Maritime Policy & Management, 37(3), 285-303. doi:10.1080/03088831003700678Carbon Emissions Study in the European Straits of the PASSAGE Project https://www.interregeurope.eu/fileadmin/user_upload/tx_tevprojects/library/file_1528203599.pdfCarbon Footprint of Container Terminal Port in Mumbai; International Conference on Impact of climate change on Food, Energy and Environment. Elsevier https://www.researchgate.net/publication/269702576_Carbon_Footprinting_of_Container_Terminal_Ports_in_MumbaiJurong Port. Carbon Footprint Report 2010 https://esi.nus.edu.sg/publications/esi-publications/publication/2015/12/18/jurong-port-carbon-footprint-report-2010Tool to Assess Global Warming at Port Facilities https://www.portoflosageneles.org/references/news_112911_calculatorCarbon Footprint a Key in Port Sustainability. CIP 2017. 14–15 https://issuu.com/revistacip3/docs/revista_cip_06_octubre_2017Mamatok, Y., Huang, Y., Jin, C., & Cheng, X. (2019). A System Dynamics Model for CO2 Mitigation Strategies at a Container Seaport. Sustainability, 11(10), 2806. doi:10.3390/su11102806Azarkamand, S., Wooldridge, C., & Darbra, R. M. (2020). Review of Initiatives and Methodologies to Reduce CO2 Emissions and Climate Change Effects in Ports. International Journal of Environmental Research and Public Health, 17(11), 3858. doi:10.3390/ijerph17113858Guía de Cálculo Guía Para el Cálculo y Gestión de la Huella de Carbono en Instalaciones Portuarias Por Niveles https://www.valenciaport.com/wp-content/uploads/guia-calculo-gestion-huella-carbono.pdfMemoria Verificación Gases Efecto Invernadero. Puerto de Valencia; Valencia. Year 2008–2016 https://www.valenciaport.com/en/publicaciones/Ministry for Ecological Transition and Demographic Challenge https://www.miteco.gob.es/en/ministerio/default.aspxhttps://www.miteco.gob.es/es/cambio-climatico/temas/mitigacion-politicas-y-medidas/instruccionescalculadorahc_tcm30-485627.pdfReal Decreto 163/2014, de 14 de Marzo, por el que se Crea el Registro de Huella de Carbono, Compensación y Proyectos de Absorción de Dióxido de Carbono https://www.boe.es/diario_boe/txt.php?id=BOE-A-2014-33792006 IPCC Guidelines for National Greenhouse Gas Inventories. Japan: N. p., 2006 https://www.ipcc-nggip.iges.or.jp/public/2006gl/Cloquell-Ballester, V., Lo-Iacono-Ferreira, V. G., Artacho-Ramírez, M. Á., & Capuz-Rizo, S. F. (2020). RUE Index as a Tool to Improve the Energy Intensity of Container Terminals—Case Study at Port of Valencia. Energies, 13(10), 2556. doi:10.3390/en1310255
    corecore