88 research outputs found
On the Structure of
A new structure for is proposed which it exists in tetragonal
state. In this structure the molecule exists in a nonlinear array
and forms the basis of the tetragonal unit cell with one basis per unit cell.
The structural analysis based on the reflections listed in ASTM 30-1479 shows
that the proposed structure is correct.Comment: six pages and four figures. Manuscript prepared in RevTe
Ferromagnetic redshift of the optical gap in GdN
We report measurements of the optical gap in a GdN film at temperatures from
300 to 6K, covering both the paramagnetic and ferromagnetic phases. The gap is
1.31eV in the paramagnetic phase and red-shifts to 0.9eV in the spin-split
bands below the Curie temperature. The paramagnetic gap is larger than was
suggested by very early experiments, and has permitted us to refine a
(LSDA+U)-computed band structure. The band structure was computed in the full
translation symmetry of the ferromagnetic ground state, assigning the
paramagnetic-state gap as the average of the majority- and minority-spin gaps
in the ferromagnetic state. That procedure has been further tested by a band
structure in a 32-atom supercell with randomly-oriented spins. After fitting
only the paramagnetic gap the refined band structure then reproduces our
measured gaps in both phases by direct transitions at the X point.Comment: 5 pages, 4 figure
The HSE hybrid functional within the FLAPW method and its application to GdN
We present an implementation of the Heyd-Scuseria-Ernzerhof (HSE) hybrid
functional within the full-potential linearized augmented-plane-wave (FLAPW)
method. Pivotal to the HSE functional is the screened electron-electron
interaction, which we separate into the bare Coulomb interaction and the
remainder, a slowly varying function in real space. Both terms give rise to
exchange potentials, which sum up to the screened nonlocal exchange potential
of HSE. We evaluate the former with the help of an auxiliary basis, defined in
such a way that the bare Coulomb matrix becomes sparse. The latter is computed
in reciprocal space, exploiting its fast convergence behavior in reciprocal
space. This approach is general and can be applied to a whole class of screened
hybrid functionals. We obtain excellent agreement of band gaps and lattice
constants for prototypical semiconductors and insulators with
electronic-structure calculations using plane-wave or Gaussian basis sets. We
apply the HSE hybrid functional to examine the ground-state properties of
rocksalt GdN, which have been controversially discussed in literature. Our
results indicate that there is a half-metal to insulator transition occurring
between the theoretically optimized lattice constant at 0 K and the
experimental lattice constant at room temperature. Overall, we attain good
agreement with experimental data for band transitions, magnetic moments, and
the Curie temperature.Comment: 13 pages, 4 figures, 6 table
Geometric Triangular Chiral Hexagon Crystal-Like Complexes Organization in Pathological Tissues Biological Collision Order
The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues.The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must be carried out to reproduce, manipulate and amplify their activity and probably use them as a base to develop new therapeutic strategies in cancer
A contemporaneous infrared flash from a long gamma-ray burst: an echo from the central engine
The explosion that results in a cosmic gamma-ray burst (GRB) is thought to
produce emission from two physical processes -- the activity of the central
engine gives rise to the high-energy emission of the burst through internal
shocking and the subsequent interaction of the flow with the external
environment produces long-wavelength afterglow. While afterglow observations
continue to refine our understanding of GRB progenitors and relativistic
shocks, gamma-ray observations alone have not yielded a clear picture of the
origin of the prompt emission nor details of the central engine. Only one
concurrent visible-light transient has been found and was associated with
emission from an external shock. Here we report the discovery of infrared (IR)
emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of
GRB 041219a. Our robotic telescope acquired 21 images during the active phase
of the burst, yielding the earliest multi-colour observations of any
long-wavelength emission associated with a GRB. Analysis of an initial IR pulse
suggests an origin consistent with internal shocks. This opens a new
possibility to study the central engine of GRBs with ground-based observations
at long wavelengths.Comment: Accepted to Nature on March 1, 2005. 9 pages, 4 figures, nature12.cls
and nature1.cls files included. This paper is under press embargo until print
publicatio
The optical afterglows and host galaxies of three short/hard gamma-ray bursts
Short GRBs are commonly thought to originate from the merging of double
compact object binaries but direct evidence for this scenario is still missing.
Optical observations of short GRBs allow us to measure redshifts, firmly
identify host galaxies, characterize their properties, and accurately localize
GRBs within them. Multiwavelength observations of GRB afterglows provide useful
information on the emission mechanisms at work. These are all key issues that
allow one to discriminate among different models of these elusive events. We
carried out photometric observations of the short/hard GRB 051227, GRB 061006,
and GRB 071227 with the ESO-VLT starting from several hours after the explosion
down to the host galaxy level several days later. For GRB 061006 and GRB 071227
we also obtained spectroscopic observations of the host galaxy. We compared the
results obtained from our optical observations with the available X-ray data of
these bursts. For all the three above bursts, we discovered optical afterglows
and firmly identified their host galaxies. About half a day after the burst,
the optical afterglows of GRB 051227 and GRB 061006 present a decay
significatly steeper than in the X-rays. In the case of GRB 051227, the optical
decay is so steep that it likely indicates different emission mechanisms in the
two wavelengths ranges. The three hosts are blue, star forming galaxies at
moderate redshifts and with metallicities comparable to the Solar one. The
projected offsets of the optical afterglows from their host galaxies centers
span a wide range, but all afterglows lie within the light of their hosts and
present evidence for local absorption in their X-ray spectra. We discuss our
findings in light of the current models of short GRB progenitors.Comment: Accepted for publication by A&A. 11 pages, 9 figures; v2: minor
changes and new version of Fig.
Increased Dickkopf-1 expression in breast cancer bone metastases
The aim of this study was to determine whether Dickkopf-1 (Dkk-1) expression in breast cancer was associated with bone metastases. We first analysed Dkk-1 expression by human breast cancer cell lines that induce osteolytic or osteoblastic lesions in animals. Dickkopf-1 levels were then measured in the bone marrow aspirates of hind limbs from eight NMRI mice inoculated with breast cancer cells that induced bone metastases and 11 age-matched non-inoculated control animals. Finally, Dkk-1 was measured in the serum of 17 women with breast cancer in complete remission, 19 women with breast cancer and bone metastases, 16 women with breast cancer and metastases at non-bone sites and 16 healthy women. Only breast cancer cells that induce osteolytic lesions in animals produced Dkk-1. There was a six-fold increase in Dkk-1 levels in the bone marrow from animals inoculated with MDA-B02 cells when compared with that of control non-inoculated animals (P=0.003). Median Dkk-1 levels in the serum of patients with breast cancer and bone metastases were significantly higher than levels of patients in complete remission (P=0.016), patients with breast cancer having metastases at non-bone sites (P<0.0001) and healthy women (P=0.047), although there was a large overlap in individual levels between the different groups. In conclusion, Dkk-1 is secreted by osteolytic human breast cancer cells lines and increased circulating levels are associated with the presence of bone metastases in patients with breast cancer. Measurements of circulating Dkk-1 levels may be useful for the clinical investigation of patients with breast cancer and bone metastases
Recommended from our members
Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses
A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays
The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis
High aldehyde dehydrogenase (ALDH) activity can be used to identify tumor-initiating and metastasis-initiating cells in various human carcinomas, including prostate cancer. To date, the functional importance of ALDH enzymes in prostate carcinogenesis, progression and metastasis has remained elusive. Previously we identified strong expression of ALDH7A1 in human prostate cancer cell lines, primary tumors and matched bone metastases. In this study, we evaluated whether ALDH7A1 is required for the acquisition of a metastatic stem/progenitor cell phenotype in human prostate cancer. Knockdown of ALDH7A1 expression resulted in a decrease of the α2hi/αvhi/CD44+ stem/progenitor cell subpopulation in the human prostate cancer cell line PC-3M-Pro4. In addition, ALDH7A1 knockdown significantly inhibited the clonogenic and migratory ability of human prostate cancer cells in vitro. Furthermore, a number of genes/factors involved in migration, invasion and metastasis were affected including transcription factors (snail, snail2, and twist) and osteopontin, an ECM molecule involved in metastasis. Knockdown of ALDH7A1 resulted in decreased intra-bone growth and inhibited experimentally induced (bone) metastasis, while intra-prostatic growth was not affected. In line with these observations, evidence is presented that TGF-β, a key player in cancer invasiveness and bone metastasis, strongly induced ALDH activity while BMP7 (an antagonist of TGF-β signaling) down-regulated ALDH activity. Our findings show, for the first time, that the ALDH7A1 enzyme is functionally involved in the formation of bone metastases and that the effect appeared dependent on the microenvironment, i.e., bone versus prostate
- …