21,400 research outputs found

    Separation of long DNA chains using non-uniform electric field: a numerical study

    Get PDF
    We study migration of DNA molecules through a microchannel with a series of electric traps controlled by an ac electric field. We describe the motion of DNA based on Brownian dynamics simulations of a beads-spring chain. Our simulation demonstrates that the chain captured by an electrode escapes from the binding electric field due to thermal fluctuation. We find that the mobility of chain would depend on the chain length; the mobility sharply increases when the length of a chain exceeds a critical value, which is strongly affected by the amplitude of the applied ac field. Thus we can adjust the length regime, in which this microchannel well separates DNA molecules, without changing the structure of the channel. We also present a theoretical insight into the relation between the critical chain length and the field amplitude.Comment: 12 pages, 9 figure

    Screened hybrid functional applied to 3d^0-->3d^8 transition-metal perovskites LaMO3 (M=Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties

    Full text link
    We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional scheme applied to the perovskite family LaMO3 (M=Sc-Cu) and discuss the role of the mixing parameter alpha (which determines the fraction of exact Hartree-Fock exchange included in the density functional theory (DFT) exchange-correlation functional) on the structural, electronic, and magnetic properties. The physical complexity of this class of compounds, manifested by the largely varying electronic characters (band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings, structural distortions (cooperative Jahn-Teller like instabilities), as well as by the strong competition between localization/delocalization effects associated with the gradual filling of the t_2g and e_g orbitals, symbolize a critical and challenging case for theory. Our results indicates that HSE is able to provide a consistent picture of the complex physical scenario encountered across the LaMO3 series and significantly improve the standard DFT description. The only exceptions are the correlated paramagnetic metals LaNiO3 and LaCuO3, which are found to be treated better within DFT. By fitting the ground state properties with respect to alpha we have constructed a set of 'optimum' values of alpha from LaScO3 to LaCuO3: it is found that the 'optimum' mixing parameter decreases with increasing filling of the d manifold (LaScO3: 0.25; LaTiO3 & LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3: 0.05; LaNiO3 & LaCuO3: 0). This trend can be nicely correlated with the modulation of the screening and dielectric properties across the LaMO3 series, thus providing a physical justification to the empirical fitting procedure.Comment: 32 pages, 29 figure

    Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems

    Get PDF
    This work deals with the formation of black hole in bidimensional dilaton gravity coupled to scalar matter fields. We investigate two scalar matter systems, one described by a sixth power potential and the other defined with two scalar fields containing up to the fourth power in the fields. The topological solutions that appear in these cases allow the formation of black holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268

    Localization of the relative phase via measurements

    Full text link
    When two independently-prepared Bose-Einstein condensates are released from their corresponding traps, the absorbtion image of the overlapping clouds presents an interference pattern. Here we analyze a model introduced by Javanainen and Yoo (J. Javanainen and S. M. Yoo, Phys. Rev. Lett. 76, 161 (1996)), who considered two atomic condensates described by plane waves propagating in opposite directions. We present an analytical argument for the measurement-induced breaking of the relative phase symmetry in this system, demonstrating how the phase gets localized after a large enough number of detection events.Comment: 8 pages, 1 figur

    Approaching the adiabatic timescale with machine-learning

    Full text link
    The control and manipulation of quantum systems without excitation is challenging, due to the complexities in fully modeling such systems accurately and the difficulties in controlling these inherently fragile systems experimentally. For example, while protocols to decompress Bose-Einstein condensates (BEC) faster than the adiabatic timescale (without excitation or loss) have been well developed theoretically, experimental implementations of these protocols have yet to reach speeds faster than the adiabatic timescale. In this work, we experimentally demonstrate an alternative approach based on a machine learning algorithm which makes progress towards this goal. The algorithm is given control of the coupled decompression and transport of a metastable helium condensate, with its performance determined after each experimental iteration by measuring the excitations of the resultant BEC. After each iteration the algorithm adjusts its internal model of the system to create an improved control output for the next iteration. Given sufficient control over the decompression, the algorithm converges to a novel solution that sets the current speed record in relation to the adiabatic timescale, beating out other experimental realizations based on theoretical approaches. This method presents a feasible approach for implementing fast state preparations or transformations in other quantum systems, without requiring a solution to a theoretical model of the system. Implications for fundamental physics and cooling are discussed.Comment: 7 pages main text, 2 pages supporting informatio

    Multipole analysis of spin observables in vector meson photoproduction

    Get PDF
    A multipole analysis of vector meson photoproduction is formulated as a generalization of the pseudoscalar meson case. Expansion of spin observables in the multipole basis and behavior of these observables near threshold and resonances are examined.Comment: 15 pages, latex, 2 figure

    Charged particle display

    Full text link
    An optical shutter based on charged particles is presented. The output light intensity of the proposed device has an intrinsic dependence on the interparticle spacing between charged particles, which can be controlled by varying voltages applied to the control electrodes. The interparticle spacing between charged particles can be varied continuously and this opens up the possibility of particle based displays with continuous grayscale.Comment: typographic errors corrected in Eqs (37) and (39); published in Journal of Applied Physics; doi:10.1063/1.317648

    Towards T1-limited magnetic resonance imaging using Rabi beats

    Full text link
    Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NV's 14N can be extracted from the beating oscillations. Second, the Rabi beats under V-type microwave excitation of the three hyperfine manifolds is studied experimentally and described theoretically.Comment: 6 pages, 8 figure
    corecore