45 research outputs found

    A novel methodology to estimate metabolic flux distributions in constraint-based models

    Get PDF
    Quite generally, constraint-based metabolic flux analysis describes the space of viable flux configurations for a metabolic network as a high-dimensional polytope defined by the linear constraints that enforce the balancing of production and consumption fluxes for each chemical species in the system. In some cases, the complexity of the solution space can be reduced by performing an additional optimization, while in other cases, knowing the range of variability of fluxes over the polytope provides a sufficient characterization of the allowed configurations. There are cases, however, in which the thorough information encoded in the individual distributions of viable fluxes over the polytope is required. Obtaining such distributions is known to be a highly challenging computational task when the dimensionality of the polytope is sufficiently large, and the problem of developing cost-effective ad hoc algorithms has recently seen a major surge of interest. Here, we propose a method that allows us to perform the required computation heuristically in a time scaling linearly with the number of reactions in the network, overcoming some limitations of similar techniques employed in recent years. As a case study, we apply it to the analysis of the human red blood cell metabolic network, whose solution space can be sampled by different exact techniques, like Hit-and-Run Monte Carlo (scaling roughly like the third power of the system size). Remarkably accurate estimates for the true distributions of viable reaction fluxes are obtained, suggesting that, although further improvements are desirable, our method enhances our ability to analyze the space of allowed configurations for large biochemical reaction networks. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Comparative analysis of metabolic and transcriptomic features of Nothobranchius furzeri

    Get PDF
    Some species have a longer lifespan than others, but usually lifespan is correlated with typical body weight. Here, we study the lifetime evolution of the metabolic behaviour of Nothobranchius furzeri, a killifish with an extremely short lifespan with respect to other fishes, even when taking into account rescaling by body weight. Comparison of the gene expression patterns of N. furzeri with those of zebrafish Danio rerio and mouse (Mus musculus) shows that a broad set of metabolic genes and pathways are affected in N. furzeri during ageing in a way that is consistent with a global deregulation of chromatin. Computational analysis of the glycolysis pathway for the three species highlights a rapid increase in the metabolic activity during the lifetime of N. furzeri with respect to the other species. Our results highlight that the unusually short lifespan of N. furzeri is associated with peculiar patterns in the metabolic activities and in chromatin dynamics

    Automatic design of mechanical metamaterial actuators

    Get PDF
    Mechanical metamaterial actuators achieve pre-determined input\u2013output operations exploiting architectural features encoded within a single 3D printed element, thus removing the need for assembling different structural components. Despite the rapid progress in the field, there is still a need for efficient strategies to optimize metamaterial design for a variety of functions. We present a computational method for the automatic design of mechanical metamaterial actuators that combines a reinforced Monte Carlo method with discrete element simulations. 3D printing of selected mechanical metamaterial actuators shows that the machine-generated structures can reach high efficiency, exceeding human-designed structures. We also show that it is possible to design efficient actuators by training a deep neural network which is then able to predict the efficiency from the image of a structure and to identify its functional regions. The elementary actuators devised here can be combined to produce metamaterial machines of arbitrary complexity for countless engineering applications

    Integrative analysis of pathway deregulation in obesity

    Get PDF
    Obesity is a pandemic disease, linked to the onset of type 2 diabetes and cancer. Transcriptomic data provides a picture of the alterations in regulatory and metabolic activities associated with obesity, but its interpretation is typically blurred by noise. Here, we solve this problem by collecting publicly available transcriptomic data from adipocytes and removing batch effects using singular value decomposition. In this way we obtain a gene expression signature of 38 genes associated to obesity and identify the main pathways involved. We then show that similar deregulation patterns can be detected in peripheral markers, in type 2 diabetes and in breast cancer. The integration of different data sets combined with the study of pathway deregulation allows us to obtain a more complete picture of gene-expression patterns associated with obesity, breast cancer, and diabetes

    Topography of epithelial-mesenchymal plasticity

    Get PDF
    The transition between epithelial and mesenchymal states has fundamental importance for embryonic development, stem cell reprogramming, and cancer progression. Here, we construct a topographic map underlying epithelial-mesenchymal transitions using a combination of numerical simulations of a Boolean network model and the analysis of bulk and single-cell gene expression data. The map reveals a multitude of metastable hybrid phenotypic states, separating stable epithelial and mesenchymal states, and is reminiscent of the free energy measured in glassy materials and disordered solids. Our work not only elucidates the nature of hybrid mesenchymal/epithelial states but also provides a general strategy to construct a topographic representation of phenotypic plasticity from gene expression data using statistical physics methods

    The configuration multi-edge model: Assessing the effect of fixing node strengths on weighted network magnitudes

    Get PDF
    Complex networks grow subject to structural constraints which affect their measurable properties. Assessing the effect that such constraints impose on their observables is thus a crucial aspect to be taken into account in their analysis. To this end,we examine the effect of fixing the strength sequence in multi-edge networks on several network observables such as degrees, disparity, average neighbor properties and weight distribution using an ensemble approach. We provide a general method to calculate any desired weighted network metric and we show that several features detected in real data could be explained solely by structural constraints. We thus justify the need of analytical null models to be used as basis to assess the relevance of features found in real data represented in weighted network form

    Identifying inhibitors of epithelial–mesenchymal plasticity using a network topology-based approach

    Get PDF
    Metastasis is the cause of over 90% of cancer-related deaths. Cancer cells undergoing metastasis can switch dynamically between different phenotypes, enabling them to adapt to harsh challenges, such as overcoming anoikis and evading immune response. This ability, known as phenotypic plasticity, is crucial for the survival of cancer cells during metastasis, as well as acquiring therapy resistance. Various biochemical networks have been identified to contribute to phenotypic plasticity, but how plasticity emerges from the dynamics of these networks remains elusive. Here, we investigated the dynamics of various regulatory networks implicated in Epithelial-mesenchymal plasticity (EMP)-an important arm of phenotypic plasticity-through two different mathematical modelling frameworks: a discrete, parameter-independent framework (Boolean) and a continuous, parameter-agnostic modelling framework (RACIPE). Results from either framework in terms of phenotypic distributions obtained from a given EMP network are qualitatively similar and suggest that these networks are multi-stable and can give rise to phenotypic plasticity. Neither method requires specific kinetic parameters, thus our results emphasize that EMP can emerge through these networks over a wide range of parameter sets, elucidating the importance of network topology in enabling phenotypic plasticity. Furthermore, we show that the ability to exhibit phenotypic plasticity correlates positively with the number of positive feedback loops in a given network. These results pave a way toward an unorthodox network topology-based approach to identify crucial links in a given EMP network that can reduce phenotypic plasticity and possibly inhibit metastasis-by reducing the number of positive feedback loops

    MicroRNA-222 Regulates Melanoma Plasticity

    Get PDF
    Melanoma is one of the most aggressive and highly resistant tumors. Cell plasticity in melanoma is one of the main culprits behind its metastatic capabilities. The detailed molecular mechanisms controlling melanoma plasticity are still not completely understood. Here we combine mathematical models of phenotypic switching with experiments on IgR39 human melanoma cells to identify possible key targets to impair phenotypic switching. Our mathematical model shows that a cancer stem cell subpopulation within the tumor prevents phenotypic switching of the other cancer cells. Experiments reveal that hsa-mir-222 is a key factor enabling this process. Our results shed new light on melanoma plasticity, providing a potential target and guidance for therapeutic studies

    Testing the robustness of laws of polysemy and brevity versus frequency

    Get PDF
    The pioneering research of G.K. Zipf on the relationship between word frequency and other word features led to the formulation of various linguistic laws. Here we focus on a couple of them: the meaning-frequency law, i.e. the tendency of more frequent words to be more polysemous, and the law of abbreviation, i.e. the tendency of more frequent words to be shorter. Here we evaluate the robustness of these laws in contexts where they have not been explored yet to our knowledge. The recovery of the laws again in new conditions provides support for the hypothesis that they originate from abstract mechanisms.Peer ReviewedPostprint (author's final draft
    corecore