106 research outputs found

    Multitarget CFTR Modulators Endowed with Multiple Beneficial Side Effects for Cystic Fibrosis Patients: Toward a Simplified Therapeutic Approach

    Get PDF
    Cystic fibrosis (CF) is a multiorgan disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR). In addition to respiratory impairment due to mucus accumulation, viruses and bacteria trigger acute pulmonary exacerbations, accelerating disease progression and mortality rate. Treatment complexity increases with patients’ age, and simplifying the therapeutic regimen represents one of the key priorities in CF. We have recently reported the discovery of multitarget compounds able to “kill two birds with one stone” by targeting F508del-CFTR and PI4KIIIβ and thus acting simultaneously as CFTR correctors and broad-spectrum enterovirus (EV) inhibitors. Starting from these preliminary results, we report herein a hit-to-lead optimization and multidimensional structure–activity relationship (SAR) study that led to compound 23a. This compound showed good antiviral and F508del-CFTR correction potency, additivity/synergy with lumacaftor, and a promising in vitro absorption, distribution, metabolism, and excretion (ADME) profile. It was well tolerated in vivo with no sign of acute toxicity and histological alterations in key biodistribution organs

    Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We compare traditional knowledge and use of wild edible plants in six rural regions of the northwest of the Iberian Peninsula as follows: Campoo, Picos de Europa, Piloña, Sanabria and Caurel in Spain and Parque Natural de Montesinho in Portugal.</p> <p>Methods</p> <p>Data on the use of 97 species were collected through informed consent semi-structured interviews with local informants. A semi-quantitative approach was used to document the relative importance of each species and to indicate differences in selection criteria for consuming wild food species in the regions studied.</p> <p>Results and discussion</p> <p>The most significant species include many wild berries and nuts (e.g. <it>Castanea sativa, Rubus ulmifolius, Fragaria vesca</it>) and the most popular species in each food-category (e.g. fruits or herbs used to prepare liqueurs such as <it>Prunus spinosa</it>, vegetables such as <it>Rumex acetosa</it>, condiments such as <it>Origanum vulgare</it>, or plants used to prepare herbal teas such as <it>Chamaemelum nobile</it>). The most important species in the study area as a whole are consumed at five or all six of the survey sites.</p> <p>Conclusion</p> <p>Social, economic and cultural factors, such as poor communications, fads and direct contact with nature in everyday life should be taken into account in determining why some wild foods and traditional vegetables have been consumed, but others not. They may be even more important than biological factors such as richness and abundance of wild edible flora. Although most are no longer consumed, demand is growing for those regarded as local specialties that reflect regional identity.</p

    DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A

    Get PDF
    DEB025/Debio 025 (Alisporivir) is a cyclophilin (Cyp)-binding molecule with potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b) to DEB025, requiring an average of 20 weeks (four independent experiments), compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold) resistance. Replacing the NS5A gene (but not the NS5B gene) from the wild type (WT) genome with the corresponding sequence from the DEB025res replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA) was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025res replicons. Unlike WT, DEB025res replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025res replicon. NMR titration experiments with peptides derived from the WT or the DEB025res domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance

    STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters

    Get PDF
    Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients. SARS-CoV-2 infection can result in severe lung inflammation and pathology, but host response remains incompletely understood. Here the authors show in Syrian hamsters that STAT2 signaling restricts systemic virus dissemination but also drives severe lung injury, playing a dual role in SARS-CoV-2 infection

    Animal models for COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (frst detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the fndings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.info:eu-repo/semantics/acceptedVersio

    Probing of Exosites Leads to Novel Inhibitor Scaffolds of HCV NS3/4A Proteinase

    Get PDF
    Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors.To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified.Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals

    Kaempferia galanga L.Zingiberaceae

    Get PDF
    Alpinia sessilis J. Koenig; Kaempferia humilis Salisb.; Kaempferia latifolia Donn ex Hornem.; Kaempferia plantaginifolia Salisb.; Kaempferia procumbens Noronha; Kaempferia rotunda Blanco (POWO 2019

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    corecore