16 research outputs found

    Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine

    Get PDF
    Actinobacillus (A.) pleuropneumoniae is among the most important pathogens in pig. The agent causes severe economic losses due to decreased performance, the occurrence of acute or chronic pleuropneumonia, and an increase in death incidence. Since therapeutics cannot be used in a sustainable manner, and vaccination is not always available, new prophylactic measures are urgently needed. Recent research has provided evidence for a genetic predisposition in susceptibility to A. pleuropneumoniae in a Hampshire × German Landrace F2 family with 170 animals. The aim of the present study is to characterize the expression response in this family in order to unravel resistance and susceptibility mechanisms and to prioritize candidate genes for future fine mapping approaches. F2 pigs differed distinctly in clinical, pathological, and microbiological parameters after challenge with A. pleuropneumoniae. We monitored genome-wide gene expression from the 50 most and 50 least susceptible F2 pigs and identified 171 genes differentially expressed between these extreme phenotypes. We combined expression QTL analyses with network analyses and functional characterization using gene set enrichment analysis and identified a functional hotspot on SSC13, including 55 eQTL. The integration of the different results provides a resource for candidate prioritization for fine mapping strategies, such as TF, TFRC, RUNX1, TCN1, HP, CD14, among others

    CF Lung Disease - a German S3 Guideline: Module 2: Diagnostics and Treatment in Chronic Infection with Pseudomonas aeruginosa

    No full text
    Cystic Fibrosis (CF) is the most common autosomal-recessive genetic disease affecting approximately 8000 people in Germany. The disease is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene leading to dysfunction of CFTR, a transmembrane chloride channel. This defect causes insufficient hydration of the epithelial lining fluid which leads to chronic inflammation of the airways. Recurrent infections of the airways as well as pulmonary exacerbations aggravate chronic inflammation, lead to pulmonary fibrosis and tissue destruction up to global respiratory insufficiency, which is responsible for the mortality in over 90% of patients. The main aim of pulmonary treatment in CF is to reduce pulmonary inflammation and chronic infection. Pseudomonas aeruginosa ( Pa ) is the most relevant pathogen in the course of CF lung disease. Colonization and chronic infection are leading to additional loss of pulmonary function. There are many possibilities to treat Pa -infection. This is a S3-clinical guideline which implements a definition for chronic Pa -infection and demonstrates evidence-based diagnostic methods and medical treatment for Pa -infection in order to give guidance for individual treatment options
    corecore