1,489 research outputs found

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file

    On the Green-Functions of the classical offshell electrodynamics under the manifestly covariant relativistic dynamics of Stueckelberg

    Full text link
    In previous paper derivations of the Green function have been given for 5D off-shell electrodynamics in the framework of the manifestly covariant relativistic dynamics of Stueckelberg (with invariant evolution parameter τ\tau). In this paper, we reconcile these derivations resulting in different explicit forms, and relate our results to the conventional fundamental solutions of linear 5D wave equations published in the mathematical literature. We give physical arguments for the choice of the Green function retarded in the fifth variable τ\tau.Comment: 16 pages, 1 figur

    Locating Boosted Kerr and Schwarzschild Apparent Horizons

    Full text link
    We describe a finite-difference method for locating apparent horizons and illustrate its capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild metric. We apply a Lorentz boost to this spacetime metric and then carry out a 3+1 decomposition. The result is a slicing of Kerr/Schwarzschild in which the black hole is propagated and Lorentz contracted. We show that our method can locate distorted apparent horizons efficiently and accurately.Comment: Submitted to Physical Review D. 12 pages and 22 figure

    Statistical Mechanics of Quantum-Classical Systems with Holonomic Constraints

    Get PDF
    The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained system arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear response function of constrained quantum-classical systems contains non-trivial additional terms which are absent in the response of unconstrained systems.Comment: Submitted to Journal of Chemical Physic

    Quantitative estimates of discrete harmonic measures

    Full text link
    A theorem of Bourgain states that the harmonic measure for a domain in Rd\R^d is supported on a set of Hausdorff dimension strictly less than dd \cite{Bourgain}. We apply Bourgain's method to the discrete case, i.e., to the distribution of the first entrance point of a random walk into a subset of Zd\Z ^d, d2d\geq 2. By refining the argument, we prove that for all \b>0 there exists \rho (d,\b)N(d,\b), any xZdx \in \Z^d, and any A{1,...,n}dA\subset \{1,..., n\}^d | \{y\in\Z^d\colon \nu_{A,x}(y) \geq n^{-\b} \}| \leq n^{\rho(d,\b)}, where νA,x(y)\nu_{A,x} (y) denotes the probability that yy is the first entrance point of the simple random walk starting at xx into AA. Furthermore, ρ\rho must converge to dd as \b \to \infty.Comment: 16 pages, 2 figures. Part (B) of the theorem is ne

    Fredholm's Minors of Arbitrary Order: Their Representations as a Determinant of Resolvents and in Terms of Free Fermions and an Explicit Formula for Their Functional Derivative

    Full text link
    We study the Fredholm minors associated with a Fredholm equation of the second type. We present a couple of new linear recursion relations involving the nnth and n1n-1th minors, whose solution is a representation of the nnth minor as an n×nn\times n determinant of resolvents. The latter is given a simple interpretation in terms of a path integral over non-interacting fermions. We also provide an explicit formula for the functional derivative of a Fredholm minor of order nn with respect to the kernel. Our formula is a linear combination of the nnth and the n±1n\pm 1th minors.Comment: 17 pages, Latex, no figures connection to supplementary compound matrices mentioned, references added, typos correcte

    The Exotic Statistics of Leapfrogging Smoke Rings

    Full text link
    The leapfrogging motion of smoke rings is a three dimensional version of the motion that in two dimensions leads to exotic exchange statistics. The statistical phase factor can be computed using the hydrodynamical Euler equation, which is a universal law for describing the properties of a large class of fluids. This suggests that three dimensional exotic exchange statistics is a common property of closed vortex loops in a variety of quantum liquids and gases, from helium superfluids to Bose-Einstein condensed alkali gases, metallic hydrogen in its liquid phases and maybe even nuclear matter in extreme conditions.Comment: 9 pages 1 figur

    Upper and lower bounds on the mean square radius and criteria for occurrence of quantum halo states

    Full text link
    In the context of non-relativistic quantum mechanics, we obtain several upper and lower limits on the mean square radius applicable to systems composed by two-body bound by a central potential. A lower limit on the mean square radius is used to obtain a simple criteria for the occurrence of S-wave quantum halo sates.Comment: 12 pages, 2 figure

    Solving the brachistochrone and other variational problems with soap films

    Full text link
    We show a method to solve the problem of the brachistochrone as well as other variational problems with the help of the soap films that are formed between two suitable surfaces. We also show the interesting connection between some variational problems of dynamics, statics, optics, and elasticity.Comment: 16 pages, 11 figures. This article, except for a small correction, has been submitted to the American Journal of Physic
    corecore