1,165 research outputs found

    Weak Lensing of the CMB: Cumulants of the Probability Distribution Function

    Get PDF
    We discuss the real-space moments of temperature anisotropies in the cosmic microwave background (CMB) due to weak gravitational lensing by intervening large-scale structure. We show that if the probability distribution function of primordial temperature anisotropies is Gaussian, then it remains unchanged after gravitational lensing. With finite resolution, however, non-zero higher-order cumulants are generated both by lensing autocorrelations and by cross-correlations between the lensing potential and secondary anisotropies in the CMB such as the Sunayev-Zel'dovich (SZ) effect. Skewness is produced by these lensing-SZ correlations, while kurtosis receives contributions from both lensing alone and lensing-SZ correlations. We show that if the projected lensing potential is Gaussian, all cumulants of higher-order than the kurtosis vanish. While recent results raise the possibility of detection of the skewness in upcoming data, the kurtosis will likely remain undetected.Comment: 11 pages, 4 figures, submitted to PR

    Solar System: Sifting through the debris

    Get PDF
    A quadrillion previously unnoticed small bodies beyond Neptune have been spotted as they dimmed X-rays from a distant source. Models of the dynamics of debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006, Nature, 442, 660-66

    A Multi-Parameter Investigation of Gravitational Slip

    Get PDF
    A detailed analysis of gravitational slip, a new post-general relativity cosmological parameter characterizing the degree of departure of the laws of gravitation from general relativity on cosmological scales, is presented. This phenomenological approach assumes that cosmic acceleration is due to new gravitational effects; the amount of spacetime curvature produced per unit mass is changed in such a way that a universe containing only matter and radiation begins to accelerate as if under the influence of a cosmological constant. Changes in the law of gravitation are further manifest in the behavior of the inhomogeneous gravitational field, as reflected in the cosmic microwave background, weak lensing, and evolution of large-scale structure. The new parameter, ϖ0\varpi_0, is naively expected to be of order unity. However, a multiparameter analysis, allowing for variation of all the standard cosmological parameters, finds that ϖ0=0.090.59+0.74(2σ)\varpi_0 = 0.09^{+0.74}_{-0.59} (2\sigma) where ϖ0=0\varpi_0=0 corresponds to a Λ\LambdaCDM universe under general relativity. Future probes of the cosmic microwave background (Planck) and large-scale structure (Euclid) may improve the limits by a factor of four.Comment: 7 pages, 9 figures, colo

    Explicit computation of shear three-point correlation functions: the one-halo model case

    Full text link
    We present a method for calculating explicit expressions of the shear three-point function for various cosmological models. The method is applied here to the one-halo model in case of power law density profiles for which results are detailed. The three-point functions are found to reproduce to a large extent patterns in the shear correlations obtained in numerical simulations and may serve as a guideline to implement optimized methods for detecting the shear three-point function. In principle, the general method presented here can also be applied for other models of matter correlation.Comment: 8 pages, 6 figures, submitted to A

    The Born and Lens-Lens Corrections to Weak Gravitational Lensing Angular Power Spectra

    Full text link
    We revisit the estimation of higher order corrections to the angular power spectra of weak gravitational lensing. Extending a previous calculation of Cooray and Hu, we find two additional terms to the fourth order in potential perturbations of large-scale structure corresponding to corrections associated with the Born approximation and the neglect of line-of-sight coupling of two foreground lenses in the standard first order result. These terms alter the convergence (κκ\kappa\kappa), the lensing shear E-mode (ϵϵ\epsilon\epsilon), and their cross-correlation (κϵ\kappa\epsilon) power spectra on large angular scales, but leave the power spectra of the lensing shear B-mode (ββ\beta\beta) and rotational (ωω\omega\omega) component unchanged as compared to previous estimates. The new terms complete the calculation of corrections to weak lensing angular power spectra associated with both the Born approximation and the lens-lens coupling to an order in which the contributions are most significant. Taking these features together, we find that these corrections are unimportant for any weak lensing survey, including for a full sky survey limited by cosmic variance.Comment: Added references, minor changes to text. 9 pages, 2 figure

    LISA Measurement of Gravitational Wave Background Anisotropy: Hexadecapole Moment via a Correlation Analysis

    Get PDF
    We discuss spatial fluctuations in the gravitational wave background arising from unresolved Galactic binary sources, such as close white dwarf binaries, due to the fact the galactic binary source distribution is anisotropic. We introduce a correlation analysis of the two data streams of the Laser Interferometer Space Antenna (LISA) to extract spherical harmonic coefficients, in an independent manner, of the hexadecapole moment (l=4l=4) related to the projected two-dimensional density distribution of the binary source population. The proposed technique complements and improves over previous suggestions in the literature to measure the gravitational wave background anisotropy based on the time modulation of data as LISA orbits around the Sun. Such techniques, however, are restricted only to certain combinations of spherical harmonic coefficients of the galaxy with no ability to separate them individually. With LISA, m=2,3m=2,3 and 4 coefficients of the hexadecapole (l=4l=4) can be measured with signal-to-noise ratios at the level of 10 and above in a certain coordinate system. In addition to the hexadecapole coefficients, when combined with the time modulation analysis, the correlation study can also be used, in principle, to measure quadrupole coefficients of the binary distribution.Comment: 8 pages, 2 figure

    Scintillation Caustics in Planetary Occultation Light Curves

    Get PDF
    We revisit the GSC5249-01240 light curve obtained during its occultation by Saturn's North polar region. In addition to refractive scintillations, the power spectrum of intensity fluctuations shows an enhancement of power between refractive and diffractive regimes. We identify this excess power as due to high amplitude spikes in the light curve and suggest that these spikes are due to caustics associated with ray crossing situations. The flux variation in individual spikes follows the expected caustic behavior, including diffraction fringes which we have observed for the first time in a planetary occultation light curve. The presence of caustics in scintillation light curves require an inner scale cut off to the power spectrum of underlying density fluctuations associated with turbulence. Another possibility is the presence of gravity waves in the atmosphere. While occultation light curves previously showed the existence of refractive scintillations, a combination of small projected stellar size and a low relative velocity during the event have allowed us to identify caustics in this occultation. This has led us to re-examine previous data sets, in which we have also found likely examples of caustics.Comment: 4 pages, 3 figures; ApJL submitte

    Heating of the IGM

    Get PDF
    Using the cosmic virial theorem, Press-Schechter analysis and numerical simulations, we compute the expected X-ray background (XRB) from the diffuse IGM with the clumping factor expected from gravitational shock heating. The predicted fluxes and temperatures are excluded from the observed XRB. The predicted clumping can be reduced by entropy injection. The required energy is computed from the two-point correlation function, as well as from Press-Schechter formalisms. The minimal energy injection of 1 keV/nucleon excludes radiative or gravitational heating as a primary energy source. We argue that the intergalactic medium (IGM) must have been heated through violent processes such as massive supernova bursts. If the heating proceeded through supernova explosions, it likely proceeded in bursts which may be observable in high redshift supernova searches. Within our model we reproduce the observed cluster luminosity-temperature relation with energy injection of 1 keV/nucleon if this injection is assumed to be uncorrelated with the local density. These parameters predict that the diffuse IGM soft XRB has a temperature of ~1 keV with a flux near 10 keV/cm^2 s str keV, which may be detectable in the near future.Comment: to appear in ApJ Lett., 11 pages incl 1 figur

    Second Order Corrections to Weak Lensing by Large-Scale Structure

    Get PDF
    We calculate corrections to the power spectrum predictions of weak lensing by large scale structure due to higher order effects in the gravitational potential. Using a perturbative approach to third order in transverse displacements, we calculate a second order correction to the angular power spectra of E and B mode shear and convergence resulting from dropping the so-called Born approximation, where one integrates along the unperturbed photon path. We also consider a correction to the power spectra from the coupling between lenses at different redshifts. Both effects generate B-mode shear and the latter also causes a net rotation of the background galaxy images. We show all these corrections are at least two orders of magnitude below the convergence or E-mode power and hence relevant only to future ultra high precision measurements. These analytical calculations are consistent with previous numerical estimates and validate the use of current large scale structure weak lensing predictions for cosmological studies and future use of B-modes as a monitor of systematic effects.Comment: 4 pages, 1 figure, submitted to ApJ
    corecore