1,165 research outputs found
Weak Lensing of the CMB: Cumulants of the Probability Distribution Function
We discuss the real-space moments of temperature anisotropies in the cosmic
microwave background (CMB) due to weak gravitational lensing by intervening
large-scale structure. We show that if the probability distribution function of
primordial temperature anisotropies is Gaussian, then it remains unchanged
after gravitational lensing. With finite resolution, however, non-zero
higher-order cumulants are generated both by lensing autocorrelations and by
cross-correlations between the lensing potential and secondary anisotropies in
the CMB such as the Sunayev-Zel'dovich (SZ) effect. Skewness is produced by
these lensing-SZ correlations, while kurtosis receives contributions from both
lensing alone and lensing-SZ correlations. We show that if the projected
lensing potential is Gaussian, all cumulants of higher-order than the kurtosis
vanish. While recent results raise the possibility of detection of the skewness
in upcoming data, the kurtosis will likely remain undetected.Comment: 11 pages, 4 figures, submitted to PR
Solar System: Sifting through the debris
A quadrillion previously unnoticed small bodies beyond Neptune have been
spotted as they dimmed X-rays from a distant source. Models of the dynamics of
debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006,
Nature, 442, 660-66
A Multi-Parameter Investigation of Gravitational Slip
A detailed analysis of gravitational slip, a new post-general relativity
cosmological parameter characterizing the degree of departure of the laws of
gravitation from general relativity on cosmological scales, is presented. This
phenomenological approach assumes that cosmic acceleration is due to new
gravitational effects; the amount of spacetime curvature produced per unit mass
is changed in such a way that a universe containing only matter and radiation
begins to accelerate as if under the influence of a cosmological constant.
Changes in the law of gravitation are further manifest in the behavior of the
inhomogeneous gravitational field, as reflected in the cosmic microwave
background, weak lensing, and evolution of large-scale structure. The new
parameter, , is naively expected to be of order unity. However, a
multiparameter analysis, allowing for variation of all the standard
cosmological parameters, finds that
where corresponds to a CDM universe under general
relativity. Future probes of the cosmic microwave background (Planck) and
large-scale structure (Euclid) may improve the limits by a factor of four.Comment: 7 pages, 9 figures, colo
Explicit computation of shear three-point correlation functions: the one-halo model case
We present a method for calculating explicit expressions of the shear
three-point function for various cosmological models. The method is applied
here to the one-halo model in case of power law density profiles for which
results are detailed. The three-point functions are found to reproduce to a
large extent patterns in the shear correlations obtained in numerical
simulations and may serve as a guideline to implement optimized methods for
detecting the shear three-point function. In principle, the general method
presented here can also be applied for other models of matter correlation.Comment: 8 pages, 6 figures, submitted to A
The Born and Lens-Lens Corrections to Weak Gravitational Lensing Angular Power Spectra
We revisit the estimation of higher order corrections to the angular power
spectra of weak gravitational lensing. Extending a previous calculation of
Cooray and Hu, we find two additional terms to the fourth order in potential
perturbations of large-scale structure corresponding to corrections associated
with the Born approximation and the neglect of line-of-sight coupling of two
foreground lenses in the standard first order result. These terms alter the
convergence (), the lensing shear E-mode (),
and their cross-correlation () power spectra on large angular
scales, but leave the power spectra of the lensing shear B-mode ()
and rotational () component unchanged as compared to previous
estimates. The new terms complete the calculation of corrections to weak
lensing angular power spectra associated with both the Born approximation and
the lens-lens coupling to an order in which the contributions are most
significant. Taking these features together, we find that these corrections are
unimportant for any weak lensing survey, including for a full sky survey
limited by cosmic variance.Comment: Added references, minor changes to text. 9 pages, 2 figure
LISA Measurement of Gravitational Wave Background Anisotropy: Hexadecapole Moment via a Correlation Analysis
We discuss spatial fluctuations in the gravitational wave background arising
from unresolved Galactic binary sources, such as close white dwarf binaries,
due to the fact the galactic binary source distribution is anisotropic. We
introduce a correlation analysis of the two data streams of the Laser
Interferometer Space Antenna (LISA) to extract spherical harmonic coefficients,
in an independent manner, of the hexadecapole moment () related to the
projected two-dimensional density distribution of the binary source population.
The proposed technique complements and improves over previous suggestions in
the literature to measure the gravitational wave background anisotropy based on
the time modulation of data as LISA orbits around the Sun. Such techniques,
however, are restricted only to certain combinations of spherical harmonic
coefficients of the galaxy with no ability to separate them individually. With
LISA, and 4 coefficients of the hexadecapole () can be measured
with signal-to-noise ratios at the level of 10 and above in a certain
coordinate system. In addition to the hexadecapole coefficients, when combined
with the time modulation analysis, the correlation study can also be used, in
principle, to measure quadrupole coefficients of the binary distribution.Comment: 8 pages, 2 figure
Scintillation Caustics in Planetary Occultation Light Curves
We revisit the GSC5249-01240 light curve obtained during its occultation by
Saturn's North polar region. In addition to refractive scintillations, the
power spectrum of intensity fluctuations shows an enhancement of power between
refractive and diffractive regimes. We identify this excess power as due to
high amplitude spikes in the light curve and suggest that these spikes are due
to caustics associated with ray crossing situations. The flux variation in
individual spikes follows the expected caustic behavior, including diffraction
fringes which we have observed for the first time in a planetary occultation
light curve. The presence of caustics in scintillation light curves require an
inner scale cut off to the power spectrum of underlying density fluctuations
associated with turbulence. Another possibility is the presence of gravity
waves in the atmosphere. While occultation light curves previously showed the
existence of refractive scintillations, a combination of small projected
stellar size and a low relative velocity during the event have allowed us to
identify caustics in this occultation. This has led us to re-examine previous
data sets, in which we have also found likely examples of caustics.Comment: 4 pages, 3 figures; ApJL submitte
Heating of the IGM
Using the cosmic virial theorem, Press-Schechter analysis and numerical
simulations, we compute the expected X-ray background (XRB) from the diffuse
IGM with the clumping factor expected from gravitational shock heating. The
predicted fluxes and temperatures are excluded from the observed XRB. The
predicted clumping can be reduced by entropy injection. The required energy is
computed from the two-point correlation function, as well as from
Press-Schechter formalisms. The minimal energy injection of 1 keV/nucleon
excludes radiative or gravitational heating as a primary energy source. We
argue that the intergalactic medium (IGM) must have been heated through violent
processes such as massive supernova bursts. If the heating proceeded through
supernova explosions, it likely proceeded in bursts which may be observable in
high redshift supernova searches. Within our model we reproduce the observed
cluster luminosity-temperature relation with energy injection of 1 keV/nucleon
if this injection is assumed to be uncorrelated with the local density. These
parameters predict that the diffuse IGM soft XRB has a temperature of ~1 keV
with a flux near 10 keV/cm^2 s str keV, which may be detectable in the near
future.Comment: to appear in ApJ Lett., 11 pages incl 1 figur
Second Order Corrections to Weak Lensing by Large-Scale Structure
We calculate corrections to the power spectrum predictions of weak lensing by
large scale structure due to higher order effects in the gravitational
potential. Using a perturbative approach to third order in transverse
displacements, we calculate a second order correction to the angular power
spectra of E and B mode shear and convergence resulting from dropping the
so-called Born approximation, where one integrates along the unperturbed photon
path. We also consider a correction to the power spectra from the coupling
between lenses at different redshifts. Both effects generate B-mode shear and
the latter also causes a net rotation of the background galaxy images. We show
all these corrections are at least two orders of magnitude below the
convergence or E-mode power and hence relevant only to future ultra high
precision measurements. These analytical calculations are consistent with
previous numerical estimates and validate the use of current large scale
structure weak lensing predictions for cosmological studies and future use of
B-modes as a monitor of systematic effects.Comment: 4 pages, 1 figure, submitted to ApJ
- …