2,293 research outputs found
Effect of turbulence on electron cyclotron current drive and heating in ITER
Non-linear local electromagnetic gyrokinetic turbulence simulations of the
ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The
turbulent transport is examined in regions of velocity space characteristic of
electrons heated by electron cyclotron waves. Electromagnetic fluctuations and
sub-dominant micro-tearing modes are found to contribute significantly to the
transport of the accelerated electrons, even though they have only a small
impact on the transport of the bulk species. The particle diffusivity for
resonant passing electrons is found to be less than 0.15 m^2/s, and their heat
conductivity is found to be less than 2 m^2/s. Implications for the broadening
of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio
Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach
QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded
to include momentum flux modeling in addition to heat and particle fluxes.
Essential for accurate momentum flux predictions, the parallel asymmetrization
of the eigenfunctions is successfully recovered by an analytical fluid model.
This is tested against self-consistent gyrokinetic calculations and allows for
a correct prediction of the ExB shear impact on the saturated potential
amplitude by means of a mixing length rule. Hence, the effect of the ExB shear
is recovered on all the transport channels including the induced residual
stress. Including these additions, QuaLiKiz remains ~10 000 faster than
non-linear gyrokinetic codes allowing for comparisons with experiments without
resorting to high performance computing. The example is given of momentum pinch
calculations in NBI modulation experiments
Charge dependence of neoclassical and turbulent transport of light impurities on MAST
Carbon and nitrogen impurity transport coefficients are determined from gas
puff experiments carried out during repeat L-mode discharges on the Mega-Amp
Spherical Tokamak (MAST) and compared against a previous analysis of helium
impurity transport on MAST. The impurity density profiles are measured on the
low-field side of the plasma, therefore this paper focuses on light impurities
where the impact of poloidal asymmetries on impurity transport is predicted to
be negligible. A weak screening of carbon and nitrogen is found in the plasma
core, whereas the helium density profile is peaked over the entire plasma
radius.Comment: 17 pages, 7 figure
Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade
Upgraded spectroscopic hardware and an improved impurity concentration
calculation allow accurate determination of boron density in the ASDEX Upgrade
tokamak. A database of boron measurements is compared to quasilinear and
nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational
effects over a range of H-mode plasma regimes. The peaking of the measured
boron profiles shows a strong anti-correlation with the plasma rotation
gradient, via a relationship explained and reproduced by the theory. It is
demonstrated that the rotodiffusive impurity flux driven by the rotation
gradient is required for the modelling to reproduce the hollow boron profiles
at higher rotation gradients. The nonlinear simulations validate the
quasilinear approach, and, with the addition of perpendicular flow shear,
demonstrate that each symmetry breaking mechanism that causes momentum
transport also couples to rotodiffusion. At lower rotation gradients, the
parallel compressive convection is required to match the most peaked boron
profiles. The sensitivities of both datasets to possible errors is
investigated, and quantitative agreement is found within the estimated
uncertainties. The approach used can be considered a template for mitigating
uncertainty in quantitative comparisons between simulation and experiment.Comment: 19 pages, 11 figures, accepted in Nuclear Fusio
The linear tearing instability in three dimensional, toroidal gyrokinetic simulations
Linear gyro-kinetic simulations of the classical tearing mode in
three-dimensional toroidal geometry were performed using the global gyro
kinetic turbulence code, GKW . The results were benchmarked against a
cylindrical ideal MHD and analytical theory calculations. The stability, growth
rate and frequency of the mode were investigated by varying the current
profile, collisionality and the pressure gradients. Both collision-less and
semi-collisional tearing modes were found with a smooth transition between the
two. A residual, finite, rotation frequency of the mode even in the absense of
a pressure gradient is observed which is attributed to toroidal finite
Larmor-radius effects. When a pressure gradient is present at low
collisionality, the mode rotates at the expected electron diamagnetic
frequency. However the island rotation reverses direction at high
collisionality. The growth rate is found to follow a scaling with
collisional resistivity in the semi-collisional regime, closely following the
semi-collisional scaling found by Fitzpatrick. The stability of the mode
closely follows the stability using resistive MHD theory, however a
modification due to toroidal coupling and pressure effects is seen
On three-manifolds dominated by circle bundles
We determine which three-manifolds are dominated by products. The result is
that a closed, oriented, connected three-manifold is dominated by a product if
and only if it is finitely covered either by a product or by a connected sum of
copies of the product of the two-sphere and the circle. This characterization
can also be formulated in terms of Thurston geometries, or in terms of purely
algebraic properties of the fundamental group. We also determine which
three-manifolds are dominated by non-trivial circle bundles, and which
three-manifold groups are presentable by products.Comment: 12 pages; to appear in Math. Zeitschrift; ISSN 1103-467
3-manifolds which are spacelike slices of flat spacetimes
We continue work initiated in a 1990 preprint of Mess giving a geometric
parameterization of the moduli space of classical solutions to Einstein's
equations in 2+1 dimensions with cosmological constant 0 or -1 (the case +1 has
been worked out in the interim by the present author). In this paper we make a
first step toward the 3+1-dimensional case by determining exactly which closed
3-manifolds M^3 arise as spacelike slices of flat spacetimes, and by finding
all possible holonomy homomorphisms pi_1(M^3) to ISO(3,1).Comment: 10 page
- …
