955 research outputs found
Adherence to the paediatric immunisation schedule in England
Both adequate coverage and adherence to paediatric immunisation schedules are required for optimal protection against vaccine preventable diseases. We studied the timeliness of routine paediatric vaccinations according to the NHS's immunisation schedule and potential factors of schedule adherence. Immunisation data was obtained from the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC). We collected vaccine types, doses, and dates for all routine paediatric vaccines between 2008 and 2018: DTaP/IPV/Hib/HepB, DTaP/IPV/Hib, DTaP/IPV, dTaP/IPV, Td/IPV, MMR, PCV, MenB, MenC, MenACWY, Hib/MenC, RV, HPV. Adherence to the immunisation schedule was calculated for each vaccine and dose. Differences in adherence between genders, NHS regions, and IMD quintiles were analysed. Our study included 6'257'828 vaccinations in 1'005'827 children. Seventy-five percent of first doses were administered within one (for vaccines scheduled in the first year of life) or two months (for vaccines scheduled later in life) following the recommended age, 19% too late and 6% too early. About half of the subsequent doses were given timely. The time between first and second doses was too short for 36% of vaccinations while 13% of second doses were administered too long after the first dose. Third doses were administered timely for 45%, too short for 37%, and too long for 18% of vaccinations. Differences in immunisation schedule adherence between girls and boys were negligible, except for HPV, and differences between the four main NHS regions were small. Overall, immunisation schedule adherence improved slightly with decreasing deprivation according to the Index of Multiple Deprivation. Efforts are required to improve the timeliness of paediatric vaccinations and to assure adequate protection against vaccine preventable diseases. We propose developing a compound measure combining coverage and adherence to provide a better indication of the protection against vaccine preventable diseases in a community
Evolutionary Interactions between N-Linked Glycosylation Sites in the HIV-1 Envelope
The addition of asparagine (N)-linked polysaccharide chains (i.e., glycans) to the gp120 and gp41 glycoproteins of human immunodeficiency virus type 1 (HIV-1) envelope is not only required for correct protein folding, but also may provide protection against neutralizing antibodies as a âglycan shield.â As a result, strong host-specific selection is frequently associated with codon positions where nonsynonymous substitutions can create or disrupt potential N-linked glycosylation sites (PNGSs). Moreover, empirical data suggest that the individual contribution of PNGSs to the neutralization sensitivity or infectivity of HIV-1 may be critically dependent on the presence or absence of other PNGSs in the envelope sequence. Here we evaluate how glycanâglycan interactions have shaped the evolution of HIV-1 envelope sequences by analyzing the distribution of PNGSs in a large-sequence alignment. Using a âcovarionâ-type phylogenetic model, we find that the rates at which individual PNGSs are gained or lost vary significantly over time, suggesting that the selective advantage of having a PNGS may depend on the presence or absence of other PNGSs in the sequence. Consequently, we identify specific interactions between PNGSs in the alignment using a new paired-character phylogenetic model of evolution, and a Bayesian graphical model. Despite the fundamental differences between these two methods, several interactions are jointly identified by both. Mapping these interactions onto a structural model of HIV-1 gp120 reveals that negative (exclusive) interactions occur significantly more often between colocalized glycans, while positive (inclusive) interactions are restricted to more distant glycans. Our results imply that the adaptive repertoire of alternative configurations in the HIV-1 glycan shield is limited by functional interactions between the N-linked glycans. This represents a potential vulnerability of rapidly evolving HIV-1 populations that may provide useful glycan-based targets for neutralizing antibodies
Co-Evolution of quasispecies: B-cell mutation rates maximize viral error catastrophes
Co-evolution of two coupled quasispecies is studied, motivated by the
competition between viral evolution and adapting immune response. In this
co-adaptive model, besides the classical error catastrophe for high virus
mutation rates, a second ``adaptation-'' catastrophe occurs, when virus
mutation rates are too small to escape immune attack. Maximizing both regimes
of viral error catastrophes is a possible strategy for an optimal immune
response, reducing the range of allowed viral mutation rates to a minimum. From
this requirement one obtains constraints on B-cell mutation rates and receptor
lengths, yielding an estimate of somatic hypermutation rates in the germinal
center in accordance with observation.Comment: 4 pages RevTeX including 2 figure
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
Hyperbolic planforms in relation to visual edges and textures perception
We propose to use bifurcation theory and pattern formation as theoretical
probes for various hypotheses about the neural organization of the brain. This
allows us to make predictions about the kinds of patterns that should be
observed in the activity of real brains through, e.g. optical imaging, and
opens the door to the design of experiments to test these hypotheses. We study
the specific problem of visual edges and textures perception and suggest that
these features may be represented at the population level in the visual cortex
as a specific second-order tensor, the structure tensor, perhaps within a
hypercolumn. We then extend the classical ring model to this case and show that
its natural framework is the non-Euclidean hyperbolic geometry. This brings in
the beautiful structure of its group of isometries and certain of its subgroups
which have a direct interpretation in terms of the organization of the neural
populations that are assumed to encode the structure tensor. By studying the
bifurcations of the solutions of the structure tensor equations, the analog of
the classical Wilson and Cowan equations, under the assumption of invariance
with respect to the action of these subgroups, we predict the appearance of
characteristic patterns. These patterns can be described by what we call
hyperbolic or H-planforms that are reminiscent of Euclidean planar waves and of
the planforms that were used in [1, 2] to account for some visual
hallucinations. If these patterns could be observed through brain imaging
techniques they would reveal the built-in or acquired invariance of the neural
organization to the action of the corresponding subgroups.Comment: 34 pages, 11 figures, 2 table
Long-Term Trends of HIV Type 1 Drug Resistance Prevalence among Antiretroviral Treatment-Experienced Patients in Switzerland
Background. Accurate quantification of the prevalence of human immunodeficiency virus type 1 (HIV-1) drug resistance in patients who are receiving antiretroviral therapy (ART) is difficult, and results from previous studies vary. We attempted to assess the prevalence and dynamics of resistance in a highly representative patient cohort from Switzerland. Methods. On the basis of genotypic resistance test results and clinical data, we grouped patients according to their risk of harboring resistant viruses. Estimates of resistance prevalence were calculated on the basis of either the proportion of individuals with a virologic failure or confirmed drug resistance (lower estimate) or the frequency-weighted average of risk group-specific probabilities for the presence of drug resistance mutations (upper estimate). Results. Lower and upper estimates of drug resistance prevalence in 8064 ART-exposed patients were 50% and 57% in 1999 and 37% and 45% in 2007, respectively. This decrease was driven by 2 mechanisms: loss to follow-up or death of high-risk patients exposed to mono- or dual-nucleoside reverse-transcriptase inhibitor therapy (lower estimates range from 72% to 75%) and continued enrollment of low-risk patients who were taking combination ART containing boosted protease inhibitors or nonnucleoside reverse-transcriptase inhibitors as first-line therapy (lower estimates range from 7% to 12%). A subset of 4184 participants (52%) had â©Ÿ1 study visit per year during 2002-2007. In this subset, lower and upper estimates increased from 45% to 49% and from 52% to 55%, respectively. Yearly increases in prevalence were becoming smaller in later years. Conclusions. Contrary to earlier predictions, in situations of free access to drugs, close monitoring, and rapid introduction of new potent therapies, the emergence of drug-resistant viruses can be minimized at the population level. Moreover, this study demonstrates the necessity of interpreting time trends in the context of evolving cohort population
Coverage, Continuity and Visual Cortical Architecture
The primary visual cortex of many mammals contains a continuous
representation of visual space, with a roughly repetitive aperiodic map of
orientation preferences superimposed. It was recently found that orientation
preference maps (OPMs) obey statistical laws which are apparently invariant
among species widely separated in eutherian evolution. Here, we examine whether
one of the most prominent models for the optimization of cortical maps, the
elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and
map continuity. While this model has been used in numerous studies, no
analytical results about the precise layout of the predicted OPMs have been
obtained so far. We present a mathematical approach to analytically calculate
the cortical representations predicted by the EN model for the joint mapping of
stimulus position and orientation. We find that in all previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search
through the EN parameter space identifies a novel regime of aperiodic OPMs with
pinwheel densities lower than found in experiments. In an extreme limit,
aperiodic OPMs quantitatively resembling experimental observations emerge.
Stabilization of these layouts results from strong nonlocal interactions rather
than from a coverage-continuity-compromise. Our results demonstrate that
optimization models for stimulus representations dominated by nonlocal
suppressive interactions are in principle capable of correctly predicting the
common OPM design. They question that visual cortical feature representations
can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
Self-organization and the selection of pinwheel density in visual cortical development
Self-organization of neural circuitry is an appealing framework for
understanding cortical development, yet its applicability remains unconfirmed.
Models for the self-organization of neural circuits have been proposed, but
experimentally testable predictions of these models have been less clear. The
visual cortex contains a large number of topological point defects, called
pinwheels, which are detectable in experiments and therefore in principle well
suited for testing predictions of self-organization empirically. Here, we
analytically calculate the density of pinwheels predicted by a pattern
formation model of visual cortical development. An important factor controlling
the density of pinwheels in this model appears to be the presence of non-local
long-range interactions, a property which distinguishes cortical circuits from
many nonliving systems in which self-organization has been studied. We show
that in the limit where the range of these interactions is infinite, the
average pinwheel density converges to . Moreover, an average pinwheel
density close to this value is robustly selected even for intermediate
interaction ranges, a regime arguably covering interaction-ranges in a wide
range of different species. In conclusion, our paper provides the first direct
theoretical demonstration and analysis of pinwheel density selection in models
of cortical self-organization and suggests to quantitatively probe this type of
prediction in future high-precision experiments.Comment: 22 pages, 3 figure
Variations in right ventricular outflow tract morphology following repair of congenital heart disease: Implications for percutaneous pulmonary valve implantation
Objective: Our aim was to identify sub-groups of right ventricular outflow tract morphology that would be suitable for percutaneous pulmonary valve implantation and to document their prevalence in our patient population. Materials and Methods: Eighty-three consecutive patients with right ventricular outflow tract dysfunction (5-41 years, 76% tetralogy of Fallot) referred to our center for cardiovascular magnetic resonance were studied. A morphological classification was created according to visual assessment of three-dimensional reconstructions and detailed measurement. Diagnosis, right ventricular outflow tract type, surgical history and treatment outcomes were documented. Results: Right ventricular outflow tract morphology was heterogeneous; nevertheless, 5 patterns were visually identified. Type I, a pyramidal morphology, was most prevalent (49%) and related to the presence of a transannular patch. Other types (II-V) were seen more commonly in patients with conduits. Two patients had unclassifiable morphology. Ninety-five percent of patients were assigned to the correct morphological classification by visual assessment alone. Percutaneous pulmonary valve implantation was performed successfully in 10 patients with Type II-V morphology and in 1 patient with unclassifiable morphology. Percutaneous implantation was not performed in patients with Type I morphology. Only right ventricular outflow tract diameters 50% of outflow tract morphologies may be suitable for this approach, in particular with the development of new devices appropriate for larger outflow
- âŠ