5 research outputs found

    Physical and Chemical Properties of Biodiesel Obtained from Amazon Sailfin Catfish (Pterygoplichthys pardalis) Biomass Oil

    No full text
    Amazon sailfin catfish (Pterygoplichthys pardalis) is considered one of the greatest threats to the biodiversity of continental aquatic systems, causing serious economic and environmental problems in the regions. In this work, the production of biodiesel from Amazon sailfin catfish biomass oil is studied. The physical and chemical properties of biofuel produced were evaluated under the specifications of the European standard EN-14214 by using gas chromatography-mass spectrometry, infrared spectroscopy, and atomic absorption spectrometry analyses. The results show that the biodiesel complies with all the specifications of the standard, except the content of polyunsaturated methyl esters. The yields obtained from oil and biodiesel were 9.67 and 90.71% (m/m), respectively. The methyl ester concentrations study identified 17 components where 47.003% m/m corresponded to methyl esters with saturated chains, whereas 34.394% m/m was attributed to monosaturated methyl esters and the remaining (18.624% m/m) to polysaturated methyl esters. Finally, mineral analysis by atomic absorption showed the absence of heavy metals Cd, Ni, and Pb, as well as low concentrations of Ni, Fe, Cu, and Zn, demonstrating that the quality of the fuel is not compromised. The study indicates the feasibility of manufacturing biodiesel using Amazon sailfin catfish biomass oil as a low-cost raw material. It represents an environmental option to mitigate a global problem of atmospheric pollution, and at the same time, it shows a commercial alternative to reduce the ecological impact caused by this fish in the diverse ecosystems to which it has spread. In addition, the great adaptability of this fish provides the possibility of a profitable process to have very high rates of reproduction and growth, allowing the generation of large amounts of biomass for the production of biodiesel

    Raman Spectroscopy and Chemometric Modeling to Predict Physical-Chemical Honey Properties from Campeche, Mexico

    No full text
    In this work, 10 chemometric models based on Raman spectroscopy were constructed to predict the physicochemical properties of honey produced in the state of Campeche, Mexico. The properties of honey studied were pH, moisture, total soluble solids (TSS), free acidity, lactonic acidity, total acidity, electrical conductivity, Redox potential, hydroxymethylfurfural (HMF), and ash content. These proprieties were obtained according to the methods described by the Association of Official Analytical Chemists, Codex Alimentarius, and the International Honey Commission. For the construction of the chemometric models, 189 honey samples were collected and analyzed in triplicate using Raman spectroscopy to generate the matrix data [X], which were correlated with each of the physicochemical properties [Y]. The predictive capacity of each model was determined by cross validation and external validation, using the statistical parameters: standard error of calibration (SEC), standard error of prediction (SEP), coefficient of determination of cross-validation (R2cal), coefficient of determination for external validation (R2val), and Student’s t-test. The statistical results indicated that the chemometric models satisfactorily predict the humidity, TSS, free acidity, lactonic acidity, total acidity, and Redox potential. However, the models for electric conductivity and pH presented an acceptable prediction capacity but not adequate to supply the conventional processes, while the models for predicting ash content and HMF were not satisfactory. The developed models represent a low-cost tool to analyze the quality of honey, and contribute significantly to increasing the honey distribution and subsequently the economy of the region
    corecore