978 research outputs found

    Indications for phosphorus fertilizer-derived uranium mobilization from arable soils to groundwater

    Get PDF
    Uranium (U) and many trace elements are enriched in phosphorus fertilizers. Concentrations up to 260 mg/kg P2O5 indicate the potential of U contamination of the environment. Two fertilized long-time soil monitoring fields (BDF) in Lower Saxony have higher top soil concentration than comparable unfertilized top soils sampled at the Green-Belt in the vicinity of the BDFs. Extraction experiments could show that fertilizer-derived U is easier mobilized and hence might be leached faster to the groundwater than the geogenic U in soils. Groundwater analyses in an area of intense agricultural production show U in correlation with nitrate, indicating an impact of anthropogenic fertilization on the U concentration in shallow groundwater. The results of soil, soil extract and groundwater analyses are giving indications for fertilizer-derived U leaching to groundwater aquifers and hence show the potential hazard for our drinking water resources

    Volatilization of fenpropimorph and clopyralid after spraying onto a sugar beet crop

    Get PDF
    Volatilization rates of pesticides were measured with two micrometeorological methods. For fenpropimorph, the highest rates (1.3-3.0% per hour) were measured in the first hours after application. The rate gradually declined to less than 0.01% per houron the sixth day. Clopyralid had much lower volatilization rates. They were highest (0.1% per hour) on the day after the day of application and declined below the detection limit (less than 0.01% per hour) on the sixth day after application. Rates calculated with the aerodynamic method were slightly higher than those calculated with the Bowen ratio

    Dietary Isomalto/Malto-Polysaccharides Increase Fecal Bulk and Microbial Fermentation in Mice

    Get PDF
    Scope: The prevalence of metabolic-syndrome-related disease has strongly increased. Nutritional intervention strategies appear attractive, particularly with novel prebiotics. Isomalto/malto-polysaccharides (IMMPs) represent promising novel prebiotics that promote proliferation of beneficial bacteria in vitro. The present study investigates for the first time the in vivo effects of IMMP in mice. Methods and results: C57BL/6 wild-type mice received control or IMMP-containing (10%, w/w) diets for 3 weeks. IMMP leads to significantly more fecal bulk (+26%, p < 0.05), higher plasma non-esterified fatty acids (colorimetric assay, +10%, p < 0.05), and lower fecal dihydrocholesterol excretion (mass spectrometry, −50%, p < 0.05). Plasma and hepatic lipid levels (colorimetric assays following lipid extraction) are not influenced by dietary IMMP, as are other parameters of sterol metabolism, including bile acids (gas chromatography/mass spectrometry). IMMP is mainly fermented in the cecum and large intestine (high-performance anion exchange chromatography). Next-generation sequencing demonstrates higher relative abundance of Bacteroides and butyrate producers (Lachnospiraceae, Roseburia Odoribacter) in the IMMP group. Conclusion: The combined results demonstrate that IMMP administration to mice increases fecal bulk and induces potentially beneficial changes in the intestinal microbiota. Further studies are required in disease models to substantiate potential health benefits.</p

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    Long-Term beta-galacto-oligosaccharides Supplementation Decreases the Development of Obesity and Insulin Resistance in Mice Fed a Western-Type Diet

    Get PDF
    Scope: The gut microbiota might critically modify metabolic disease development. Dietary fibers such as galacto-oligosaccharides (GOS) presumably stimulate bacteria beneficial for metabolic health. This study assesses the impact of GOS on obesity, glucose, and lipid metabolism. Methods and results: Following Western-type diet feeding (C57BL/6 mice) with or without β-GOS (7% w/w, 15 weeks), body composition, glucose and insulin tolerance, lipid profiles, fat kinetics and microbiota composition are analyzed. GOS reduces body weight gain (p < 0.01), accumulation of epididymal (p < 0.05), perirenal (p < 0.01) fat, and insulin resistance (p < 0.01). GOS-fed mice have lower plasma cholesterol (p < 0.05), mainly within low-density lipoproteins, lower intestinal fat absorption (p < 0.01), more fecal neutral sterol excretion (p < 0.05) and higher intestinal GLP-1 expression (p < 0.01). Fecal bile acid excretion is lower (p < 0.01) in GOS-fed mice with significant compositional differences, namely decreased cholic, α-muricholic, and deoxycholic acid excretion, whereas hyodeoxycholic acid increased. Substantial changes in microbiota composition, conceivably beneficial for metabolic health, occurred upon GOS feeding. Conclusion: GOS supplementation to a Western-type diet improves body weight gain, dyslipidemia, and insulin sensitivity, supporting a therapeutic potential of GOS for individuals at risk of developing metabolic syndrome

    An in vitro fermentation model to study the impact of bacteriophages targeting shiga toxin-encoding escherichia coli on the colonic microbiota

    Get PDF
    Lytic bacteriophages are considered safe for human consumption as biocontrol agents against foodborne pathogens, in particular in ready-to-eat foodstuffs. Phages could, however, evolve to infect different hosts when passing through the gastrointestinal tract (GIT). This underlines the importance of understanding the impact of phages towards colonic microbiota, particularly towards bacterial families usually found in the colon such as the Enterobacteriaceae. Here we propose in vitro batch fermentation as model for initial safety screening of lytic phages targeting Shiga toxin-producing Escherichia coli (STEC). As inoculum we used faecal material of three healthy donors. To assess phage safety, we monitored fermentation parameters, including short chain fatty acid production and gas production/intake by colonic microbiota. We performed shotgun metagenomic analysis to evaluate the outcome of phage interference with colonic microbiota composition and functional potential. During the 24h incubation, concentrations of phage and its host were also evaluated. We found the phage used in this study, named E. coli phage vB_EcoS_Ace (Ace), to be safe towards human colonic microbiota, independently of the donors faecal content used. This suggests that individuality of donor faecal microbiota did not interfere with phage effect on the fermentations. However, the model revealed that the attenuated STEC strain used as phage host perturbed the faecal microbiota as based on metagenomic analysis, with potential differences in metabolic output. We conclude that the in vitro batch fermentation model used in this study is a reliable safety screening for lytic phages intended to be used as biocontrol agents.info:eu-repo/semantics/publishedVersio

    Local non-Gaussianity from inflation

    Get PDF
    The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.Comment: 21 pages, 1 figure, invited review to appear in Classical and Quantum Gravity special issue on non-linear and non-Gaussian cosmological perturbation

    Microbial diversity studies of the porcine gastrointestinal ecosystem during weaning transition

    Get PDF
    At the time of weaning, major quantitative and qualitative changes occur in the composition of the intestinal microbiota of piglets, influenced by diet, environmental factors, and the host. Within a short period of time, the intestinal microbiota must ultimately develop from a simple, unstable community into a complex and stable one. Here we present data on the development of the intestinal microbiota based on 16S rRNA gene sequence diversity. In addition to a PCR-based analysis of the 16S rRNA gene by cloning and denaturing gradient gel electrophoresis (DGGE), data on fluorescent in situ hybridisation (FISH) are presented to quantify the total bacterial communities, major Lactobacillus populations and specific Lactobacillus species. The results reported here indicate that the addition of non-digestible, fermentable carbohydrates (= prebiotics) leads to an enrichment of lactobacilli in the small intestine, and increased stability and diversity of the bacterial community in the colon. The data support the hypothesis that changes of the diet can modulate the composition of the microbiota in the intestine. These findings may have potentially major implications for the development of dietary strategies aiming to improve animal health during the weaning process
    • …
    corecore