722 research outputs found

    FUSE and HST STIS Observations of Hot and Cold Gas in the AB Aurigae System

    Get PDF
    We present the first observations of a Herbig Ae star with a circumstellar disk by the Far Ultraviolet Spectroscopic Explorer (FUSE), as well as a simultaneous observation of the star obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS). The spectra of AB Aurigae show emission and absorption features arising from gasses that have a wide range in temperature, from hot OVI emission to cold molecular hydrogen and CO absorption. Emissions from the highly ionized species OVI and CIII present in the FUSE spectrum are redshifted, while absorption features arising from low-ionization species like OI, NI, and SiII are blueshifted and show characteristic stellar wind line-profiles. We find the total column density of molecular hydrogen toward AB Aur from the FUSE apectrum, N(H_2) = (6.8 +/- 0.5) x 10^19 cm^-2. The gas kinetic temperature of the molecular hydrogen derived from the ratio N(J=1)/N(J=0) is 65 +/- 4 K. The column density of the CO observed in the STIS spectrum is N(CO) = (7.1 +/- 0.5) x 10^13 cm^-2, giving a CO/H_2 ratio of (1.04 +/- 0.11) x 10^-6. We also use the STIS spectrum to find the column density of HI, permitting us to calculate the total column density of hydrogen atoms, the fractional abundance of H_2, and the gas-to-dust ratio.Comment: 5 pages, including 6 figures. LaTex2e (emulateapj5.sty). Accepted for publication in ApJ Letter

    Observations of 51 Ophiuchi with MIDI at the VLTI

    Full text link
    We present interferometric observations of the Be star 51 Ophiuchi. These observations were obtained during the science demonstration phase of the MIDI instrument at the Very Large Telescope Interferometer (VLTI). Using MIDI, a Michelson 2 beam combiner that operates at the N band (8 to 13 microns), we obtained for the first time observations of 51 Oph in the mid-infrared at high-angular resolution. It is currently known that this object presents a circumstellar dust and gas disk that shows a very different composition from other Herbig Ae disks. The nature of the 51 Oph system is still a mystery to be solved. Does it have a companion? Is it a protoplanetary system? We still don't know. Observations with MIDI at the VLTI allowed us to reach high-angular resolution (20 mas).We have several uv points that allowed us to constrain the disk model. We have modeled 51 Oph visibilities and were able to constrain the size and geometry of the 51 Oph circumstellar disk.Comment: 5 pages, 3 figures, 2 tables, to be published in the proceedings of "The Power of Optical / IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation", Garching, April 4-8, 200

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Can gas in young debris disks be constrained by their radial brightness profiles?

    Full text link
    Disks around young stars are known to evolve from optically thick, gas-dominated protoplanetary disks to optically thin, almost gas-free debris disks. It is thought that the primordial gas is largely removed at ages of ~10 Myr, but it is difficult to discern the true gas densities from gas observations. This suggests using observations of dust: it has been argued that gas, if present with higher densities, would lead to flatter radial profiles of the dust density and surface brightness than those actually observed. However, here we show that these profiles are surprisingly insensitive to variation of the parameters of a central star, location of the dust-producing planetesimal belt, dustiness of the disk and - most importantly - the parameters of the ambient gas. This result holds for a wide range of gas densities (three orders of magnitude), for different radial distributions of the gas temperature, and different gas compositions. The brightness profile slopes of -3...-4 we find are the same that were theoretically found for gas-free debris disks, and they are the same as actually retrieved from observations of many debris disks. Our specific results for three young (10-30 Myr old), spatially resolved, edge-on debris disks (beta Pic, HD 32297, and AU Mic) show that the observed radial profiles of the surface brightness do not pose any stringent constraints on the gas component of the disk. We cannot exclude that outer parts of the systems may have retained substantial amounts of primordial gas which is not evident in the gas observations (e.g. as much as 50 Earth masses for beta Pic). However, the possibility that gas, most likely secondary, is only present in little to moderate amounts, as deduced from gas detections (e.g. ~0.05 Earth masses in the beta Pic disk), remains open, too.Comment: Accepted for publication in Astronomy and Astrophysic

    High Resolution HST-STIS Spectra of CI and CO in the Beta Pictoris Circumstellar Disk

    Full text link
    High resolution FUV echelle spectra showing absorption features arising from CI and CO gas in the Beta Pictoris circumstellar (CS) disk were obtained on 1997 December 6 and 19 using the Space Telescope Imaging Spectrograph (STIS). An unsaturated spin-forbidden line of CI at 1613.376 A not previously seen in spectra of Beta Pictoris was detected, allowing for an improved determination of the column density of CI at zero velocity relative to the star (the stable component), N = (2-4) x 10^{16} cm^{-2}. Variable components with multiple velocities, which are the signatures of infalling bodies in the Beta Pictoris CS disk, are observed in the CI 1561 A and 1657 A multiplets. Also seen for the first time were two lines arising from the metastable singlet D level of carbon, at 1931 A and 1463 A The results of analysis of the CO A-X (0-0), (1-0), and (2-0) bands are presented, including the bands arising from {13}^CO, with much better precision than has previously been possible, due to the very high resolution provided by the STIS echelle gratings. Only stable CO gas is observed, with a column density N(CO) = (6.3 +/- 0.3) x 10^{14} cm{-2}. An unusual ratio of the column densities of {12}^CO to {13}^CO is found (R = 15 +/- 2). The large difference between the column densities of CI and CO indicates that photodissociation of CO is not the primary source of CI gas in the disk, contrary to previous suggestion.Comment: 13 pages, including 6 figures. LaTex2e (emulateapj5.sty). Accepted for publication in Ap

    Constraints on the gas content of the Fomalhaut debris belt. Can gas-dust interactions explain the belt's morphology?

    Get PDF
    Context: The 440 Myr old main-sequence A-star Fomalhaut is surrounded by an eccentric debris belt with sharp edges. This sort of a morphology is usually attributed to planetary perturbations, but the orbit of the only planetary candidate detected so far, Fomalhaut b, is too eccentric to efficiently shape the belt. Alternative models that could account for the morphology without invoking a planet are stellar encounters and gas-dust interactions. Aims: We aim to test the possibility of gas-dust interactions as the origin of the observed morphology by putting upper limits on the total gas content of the Fomalhaut belt. Methods: We derive upper limits on the CII 158 ÎŒ\mum and OI 63 ÎŒ\mum emission by using non-detections from the Photodetector Array Camera and Spectrometer (PACS) onboard the Herschel Space Observatory. Line fluxes are converted into total gas mass using the non-local thermodynamic equilibrium (non-LTE) code RADEX. We consider two different cases for the elemental abundances of the gas: solar abundances and abundances similar to those observed for the gas in the ÎČ\beta Pictoris debris disc. Results: The gas mass is shown to be below the millimetre dust mass by a factor of at least ∌\sim3 (for solar abundances) respectively ∌\sim300 (for ÎČ\beta Pic-like abundances). Conclusions: The lack of gas co-spatial with the dust implies that gas-dust interactions cannot efficiently shape the Fomalhaut debris belt. The morphology is therefore more likely due to a yet unseen planet (Fomalhaut c) or stellar encounters.Comment: 5 pages, 3 figures, published in A&A; versions 2 and 3: language editin

    Numerical Study of the Two Color Attoworld

    Full text link
    We consider QCD at very low temperatures and non-zero quark chemical potential from lattice Monte Carlo simulations of the two-color theory in a very small spatial volume (the attoscale). In this regime the quark number rises in discrete levels in qualitative agreement with what is found analytically at one loop on S3xS1 with radius R_S3 << 1/{\Lambda}_QCD. The detailed level degeneracy, however, cannot be accounted for using weak coupling arguments. At each rise in the quark number there is a corresponding spike in the Polyakov line, also in agreement with the perturbative results. In addition the quark number susceptibility shows a similar behaviour to the Polyakov line and appears to be a good indicator of a confinement-deconfinement type of transition.Comment: 18 pages, 10 figure

    The deconfinement transition of finite density QCD with heavy quarks from strong coupling series

    Get PDF
    Starting from Wilson's action, we calculate strong coupling series for the Polyakov loop susceptibility in lattice gauge theories for various small N_\tau in the thermodynamic limit. Analysing the series with Pad\'e approximants, we estimate critical couplings and exponents for the deconfinement phase transition. For SU(2) pure gauge theory our results agree with those from Monte-Carlo simulations within errors, which for the coarser N_\tau=1,2 lattices are at the percent level. For QCD we include dynamical fermions via a hopping parameter expansion. On a N_\tau=1 lattice with N_f=1,2,3, we locate the second order critical point where the deconfinement transition turns into a crossover. We furthermore determine the behaviour of the critical parameters with finite chemical potential and find the first order region to shrink with growing \mu. Our series moreover correctly reflects the known Z(N) transition at imaginary chemical potential.Comment: 18 pages, 7 figures, typos corrected, version published in JHE

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    Fermion Back-Reaction and the Sphaleron

    Full text link
    Using a simple model, a new sphaleron solution which incorporates finite fermionic density effects is obtained. The main result is that the height of the potential barrier (sphaleron energy) decreases as the fermion density increases. This suggests that the rate of sphaleron-induced transitions increases when the fermionic density increases. However the rate increase is not expected to change significantly the predictions from the standard sphaleron-induced baryogenesis scenarios.Comment: 11 pages, Revtex (2 figures available upon request), to appear in Phys. Rev. D (Rapid Communication
    • 

    corecore