7,848 research outputs found

    Near- to mid-infrared picosecond optical parametric oscillator based on periodically poled RbTiOAsO4

    Get PDF
    We describe a Ti:sapphire-pumped picosecond optical parametric oscillator based on periodically poled RbTiOAsO4 that is broadly tunable in the near to mid infrared. A 4.5-mm single-grating crystal at room temperature in combination with pump wavelength tuning provided access to a continuous-tuning range from 3.35 to 5 mu m, and a pump power threshold of 90 mW was measured. Average mid-infrared output powers in excess of 100 mW and total output powers of 400 mW in similar to 1-ps pulses were obtained at 33% extraction efficiency. (C) 1998 Optical Society of America.</p

    GW approximation with self-screening correction

    Full text link
    The \emph{GW} approximation takes into account electrostatic self-interaction contained in the Hartree potential through the exchange potential. However, it has been known for a long time that the approximation contains self-screening error as evident in the case of the hydrogen atom. When applied to the hydrogen atom, the \emph{GW} approximation does not yield the exact result for the electron removal spectra because of the presence of self-screening: the hole left behind is erroneously screened by the only electron in the system which is no longer present. We present a scheme to take into account self-screening and show that the removal of self-screening is equivalent to including exchange diagrams, as far as self-screening is concerned. The scheme is tested on a model hydrogen dimer and it is shown that the scheme yields the exact result to second order in (U0U1)/2t(U_{0}-U_{1})/2t where U0U_{0} and U1U_{1} are respectively the onsite and offsite Hubbard interaction parameters and tt the hopping parameter.Comment: 9 pages, 2 figures; Submitted to Phys. Rev.

    Polarized Neutron Laue Diffraction on a Crystal Containing Dynamically Polarized Proton Spins

    Full text link
    We report on a polarized-neutron Laue diffraction experiment on a single crystal of neodynium doped lanthanum magnesium nitrate hydrate containing polarized proton spins. By using dynamic nuclear polarization to polarize the proton spins, we demonstrate that the intensities of the Bragg peaks can be enhanced or diminished significantly, whilst the incoherent background, due to proton spin disorder, is reduced. It follows that the method offers unique possibilities to tune continuously the contrast of the Bragg reflections and thereby represents a new tool for increasing substantially the signal-to-noise ratio in neutron diffraction patterns of hydrogenous matter.Comment: 5 pages, 3 figure

    A Quantum solution to the Byzantine agreement problem

    Full text link
    We present a solution to an old and timely problem in distributed computing. Like Quantum Key Distribution (QKD), quantum channels make it possible to achieve taks classically impossible. However, unlike QKD, here the goal is not secrecy but agreement, and the adversary is not outside but inside the game, and the resources require qutrits.Comment: 4 pages, 1 figur

    Quantum secret sharing between m-party and n-party with six states

    Full text link
    We propose a quantum secret sharing scheme between mm-party and nn-party using three conjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all mm members in group 1 choose randomly their own secret key individually and independently, and then directly encode their respective secret information on the states of single photons via unitary operations, then the last one (the mmth member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. The secret message shared by group 1 and group 2 in such a way that neither subset of each group nor the union of a subset of group 1 and a subset of group 2 can extract the secret message, but each whole group (all the members of each group) can. The scheme is asymptotically 100% in efficiency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. We show that it is secure and has an advantage over the one based on two conjugate bases. We also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. This protocol is feasible with present-day technique.Comment: 7 page

    Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state

    Full text link
    We present a scheme for symmetric multiparty quantum state sharing of an arbitrary mm-qubit state with mm Greenberger-Horne-Zeilinger states following some ideas from the controlled teleportation [Phys. Rev. A \textbf{72}, 02338 (2005)]. The sender Alice performs mm Bell-state measurements on her 2m2m particles and the controllers need only to take some single-photon product measurements on their photons independently, not Bell-state measurements, which makes this scheme more convenient than the latter. Also it does not require the parties to perform a controlled-NOT gate on the photons for reconstructing the unknown mm-qubit state and it is an optimal one as its efficiency for qubits approaches the maximal value.Comment: 6 pages, no figures; It simplifies the process for sharing an arbitrary m-qubit state in Phys. Rev. A 72, 022338 (2005) (quant-ph/0501129
    corecore