16,874 research outputs found
Response to “Comment on ‘Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles”’ [J. Chem. Phys. 138, 157101 (2013)]
No abstract: this is a "response" to a Comment
Monte Carlo simulations of single polymer force-extension relations
We present Monte Carlo simulations for studying the statistical mechanics of arbitrarily long single molecules under stretching. In many cases in which the thermodynamic
limit is not satisfied, different statistical ensembles yield different macroscopic force-displacement
curves. In this work we provide a description of the Monte Carlo simulations and discuss in
details the assumptions adopted
High-energy Pulsar Wind Nebulae and SuperNova Remnants
After the second year of Fermi orbiting, the number of galactic sources associated with Pulsar Wind Nebulae (PWNe) and SuperNova Remnants (SNRs) has largely increased. For all these sources multi-wavelenghts spectral energy
distributions have been investigated and information about acceleration mechanisms and interaction sites have been collected and studied. The GeV-TeV connection of some recently detected sources will be presented and different interpretation of the observed spectra will be discussed
Signatures of rotating binaries in micro-lensing experiments
Gravitational microlensing offers a powerful method with which to probe a
variety of binary-lens systems, as the binarity of the lens introduces
deviations from the typical (single-lens) Paczy\'nski behaviour in the event
light curves. Generally, a static binary lens is considered to fit the observed
light curve and, when the orbital motion is taken into account, an
oversimplified model is usually employed. In this paper, we treat the
binary-lens motion in a realistic way and focus on simulated events that are
fitted well by a Paczy\'nski curve. We show that an accurate timing analysis of
the residuals (calculated with respect to the best-fitting Paczy\'nski model)
is usually sufficient to infer the orbital period of the binary lens. It goes
without saying that the independently estimated period may be used to further
constrain the orbital parameters obtained by the best-fitting procedure, which
often gives degenerate solutions. We also present a preliminary analysis of the
event OGLE-2011-BLG-1127 / MOA-2011-BLG-322, which has been recognized to be
the result of a binary lens. The period analysis results in a periodicity of
\simeq 12 days, which confirms the oscillation of the observed data around the
best-fitting model. The estimated periodicity is probably associated with an
intrinsic variability of the source star, and therefore there is an opportunity
to use this technique to investigate either the intrinsic variability of the
source or the effects induced by the binary-lens orbital motion.Comment: In press on MNRAS, 2014. 8 pages, 4 figures. On-line material
available on the Journal web-pag
IIR Adaptive Filters for Detection of Gravitational Waves from Coalescing Binaries
In this paper we propose a new strategy for gravitational waves detection
from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This
strategy is a classical hierarchical strategy in which the ALE filters have the
role of triggers, used to select data chunks which may contain gravitational
events, to be further analyzed with more refined optimal techniques, like the
the classical Matched Filter Technique. After a direct comparison of the
performances of ALE filters with the Wiener-Komolgoroff optimum filters
(matched filters), necessary to discuss their performance and to evaluate the
statistical limitation in their use as triggers, we performed a series of
tests, demonstrating that these filters are quite promising both for the
relatively small computational power needed and for the robustness of the
algorithms used. The performed tests have shown a weak point of ALE filters,
that we fixed by introducing a further strategy, based on a dynamic bank of ALE
filters, running simultaneously, but started after fixed delay times. The
results of this global trigger strategy seems to be very promising, and can be
already used in the present interferometers, since it has the great advantage
of requiring a quite small computational power and can easily run in real-time,
in parallel with other data analysis algorithms.Comment: Accepted at SPIE: "Astronomical Telescopes and Instrumentation". 9
pages, 3 figure
Rare diseases of the anterior segment of the eye: update on diagnosis and management
This special issue is focused on the current approaches used to identify and manage rare diseases of the anterior segment
of the eye, which range from congenital to acquired disorders that are caused by ocular or systemic conditions and often
have consequences that extend beyond the anterior segment of the eye
- …