582 research outputs found

    A Statistical Interpretation of Space and Classical-Quantum duality

    Full text link
    By defining a prepotential function for the stationary Schr\"odinger equation we derive an inversion formula for the space variable xx as a function of the wave-function ψ\psi. The resulting equation is a Legendre transform that relates xx, the prepotential F{\cal F}, and the probability density. We invert the Schr\"odinger equation to a third-order differential equation for F{\cal F} and observe that the inversion procedure implies a xx-ψ\psi duality. This phenomenon is related to a modular symmetry due to the superposition of the solutions of the Schr\"odinger equation. We propose that in quantum mechanics the space coordinate can be interpreted as a macroscopic variable of a statistical system with ℏ\hbar playing the role of a scaling parameter. We show that the scaling property of the space coordinate with respect to τ=∂ψ2F\tau=\partial_{\psi}^2{\cal F} is determined by the ``beta-function''. We propose that the quantization of the inversion formula is a natural way to quantize geometry. The formalism is extended to higher dimensions and to the Klein-Gordon equation.Comment: 11 pages. Standard Latex. Final version to appear in Physical Review Letters. Revised and extended version. The formalism is extended to higher dimensions and to the Klein-Gordon equation. A possible connection with string theory is considered. The x−ψx-\psi duality is emphasized by a minor change in the title. The new title is: Duality of xx and ψ\psi and a statistical interpretation of space in quantum mechanic

    Branched Matrix Models and the Scales of Supersymmetric Gauge Theories

    Full text link
    In the framework of the matrix model/gauge theory correspondence, we consider supersymmetric U(N) gauge theory with U(1)NU(1)^N symmetry breaking pattern. Due to the presence of the Veneziano--Yankielowicz effective superpotential, in order to satisfy the FF--term condition ∑iSi=0\sum_iS_i=0, we are forced to introduce additional terms in the free energy of the corresponding matrix model with respect to the usual formulation. This leads to a matrix model formulation with a cubic potential which is free of parameters and displays a branched structure. In this way we naturally solve the usual problem of the identification between dimensionful and dimensionless quantities. Furthermore, we need not introduce the N=1\N=1 scale by hand in the matrix model. These facts are related to remarkable coincidences which arise at the critical point and lead to a branched bare coupling constant. The latter plays the role of the N=1\N=1 and N=2\N=2 scale tuning parameter. We then show that a suitable rescaling leads to the correct identification of the N=2\N=2 variables. Finally, by means of the the mentioned coincidences, we provide a direct expression for the N=2\N=2 prepotential, including the gravitational corrections, in terms of the free energy. This suggests that the matrix model provides a triangulation of the istanton moduli space.Comment: 1+18 pages, harvmac. Added discussion on the CSW relative shifts of theta vacua and the odd phases at the critical point. References added and typos correcte

    Extending the Belavin-Knizhnik "wonderful formula" by the characterization of the Jacobian

    Full text link
    A long-standing question in string theory is to find the explicit expression of the bosonic measure, a crucial issue also in determining the superstring measure. Such a measure was known up to genus three. Belavin and Knizhnik conjectured an expression for genus four which has been proved in the framework of the recently introduced vector-valued Teichmueller modular forms. It turns out that for g>3 the bosonic measure is expressed in terms of such forms. In particular, the genus four Belavin-Knizhnik "wonderful formula" has a remarkable extension to arbitrary genus whose structure is deeply related to the characterization of the Jacobian locus. Furthermore, it turns out that the bosonic string measure has an elegant geometrical interpretation as generating the quadrics in P^{g-1} characterizing the Riemann surface. All this leads to identify forms on the Siegel upper half-space that, if certain conditions related to the characterization of the Jacobian are satisfied, express the bosonic measure as a multiresidue in the Siegel upper half-space. We also suggest that it may exist a super analog on the super Siegel half-space.Comment: 15 pages. Typos corrected, refs. and comments adde

    Matrix Models, Argyres-Douglas singularities and double scaling limits

    Full text link
    We construct an N=1 theory with gauge group U(nN) and degree n+1 tree level superpotential whose matrix model spectral curve develops an A_{n+1} Argyres-Douglas singularity. We evaluate the coupling constants of the low-energy U(1)^n theory and show that the large N expansion is singular at the Argyres-Douglas points. Nevertheless, it is possible to define appropriate double scaling limits which are conjectured to yield four dimensional non-critical string theories as proposed by Ferrari. In the Argyres-Douglas limit the n-cut spectral curve degenerates into a solution with n/2 cuts for even n and (n+1)/2 cuts for odd n.Comment: 31 pages, 1 figure; the expression of the superpotential has been corrected and the calculation of the coupling constants of the low-energy theory has been adde

    Dual Interpretations of Seiberg-Witten and Dijkgraaf-Vafa curves

    Full text link
    We give dual interpretations of Seiberg-Witten and Dijkgraaf-Vafa (or matrix model) curves in n=1 supersymmetric U(N) gauge theory. This duality interchanges the rank of the gauge group with the degree of the superpotential; moreover, the constraint of having at most log-normalizable deformations of the geometry is mapped to a constraint in the number of flavors N_f < N in the dual theory.Comment: Latex2e, 22 pages, 2 figure

    Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors

    Get PDF
    We present an approach to experimentally evaluate gravity gradient noise, a potentially limiting noise source in advanced interferometric gravitational wave (GW) detectors. In addition, the method can be used to provide sub-percent calibration in phase and amplitude of modern interferometric GW detectors. Knowledge of calibration to such certainties shall enhance the scientific output of the instruments in case of an eventual detection of GWs. The method relies on a rotating symmetrical two-body mass, a Dynamic gravity Field Generator (DFG). The placement of the DFG in the proximity of one of the interferometer's suspended test masses generates a change in the local gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure

    Chiral Rings, Anomalies and Electric-Magnetic Duality

    Full text link
    We study electric-magnetic duality in the chiral ring of a supersymmetric U(N_c) gauge theory with adjoint and fundamental matter, in presence of a general confining phase superpotential for the adjoint and the mesons. We find the magnetic solution corresponding to both the pseudoconfining and higgs electric vacua. By means of the Dijkgraaf-Vafa method, we match the effective glueball superpotentials and show that in some cases duality works exactly offshell. We give also a picture of the analytic structure of the resolvents in the magnetic theory, as we smoothly interpolate between different higgs vacua on the electric side.Comment: 54 pages, harvmac. v2: typos correcte

    Algebraic-geometrical formulation of two-dimensional quantum gravity

    Get PDF
    We find a volume form on moduli space of double punctured Riemann surfaces whose integral satisfies the Painlev\'e I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite dimensional moduli space in the spirit of Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.Comment: 10 pages, Latex fil

    The Proof of the Dijkgraaf-Vafa Conjecture and application to the mass gap and confinement problems

    Full text link
    Using generalized Konishi anomaly equations, it is known that one can express, in a large class of supersymmetric gauge theories, all the chiral operators expectation values in terms of a finite number of a priori arbitrary constants. We show that these constants are fully determined by the requirement of gauge invariance and an additional anomaly equation. The constraints so obtained turn out to be equivalent to the extremization of the Dijkgraaf-Vafa quantum glueball superpotential, with all terms (including the Veneziano-Yankielowicz part) unambiguously fixed. As an application, we fill non-trivial gaps in existing derivations of the mass gap and confinement properties in super Yang-Mills theories.Comment: 31 pages, 1 figure; v2: typos corrected; references, a note on Kovner-Shifman vacua (section 4.3) and a few clarifying comments in Section 3 added; v3: cosmetic changes, JHEP versio
    • 

    corecore