5,374 research outputs found
Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change
Selection genetique sur la reponse au stress et stress a l'abattage: consequences sur le proteome musculaire et lien avec la qualite de la chair chez la truite arc-en-ciel.
L'origine génétique des animaux est un des facteurs déterminants des caractéristiques des poissons en élevage
(croissance, morphologie…) et de la qualité de leur chair. Une sélection divergente, basée sur la réponse individuelle de truite, en terme de niveau plasmatique de cortisol, suite à un stress aigu de confinement, a permis de montrer que ce paramètre est héritable, et d'obtenir des familles de truites présentant des niveaux de réponse à un stress aigu bien distincts (Pottinger et Carrick, 1999). Les animaux de ces familles divergentes ont été caractérisés pour leur croissance, qui s'avère meilleure pour les poissons répondant faiblement au stress, leur morphologie, et la qualité de leur chair. Les poissons répondant faiblement au stress présentent une chair moins lumineuse, plus jaune, et une résistance mécanique moindre associée à des fibres musculaires plus grosses et une teneur en lipides plus importante (Lefèvre et al., 2008a). Un stress au moment de l'abattage modifie le métabolisme post-mortem et conduit, la plupart du temps chez les salmonidés, à une chair moins ferme et plus pale (Lefèvre et al., 2008b). Un tel effet a été confirmé dans cette expérimentation de façon similaire pour les deux souches sélectionnées. Les protéines permettant d’expliquer potentiellement ces différences de qualité ne sont pas connues. L'objectif de ce travail était d'identifier les protéines différentiellement exprimées entre les deux souches sélectionnées et ayant subies ou non un stress de confinement juste avant l'abattage et de faire le lien avec les paramètres de qualité déjà mesurés
Unveiling hidden structures in the Coma cluster
We have assembled a large data-set of 613 galaxy redshifts in the Coma
cluster, the largest presently available for a cluster of galaxies. We have
defined a sample of cluster members complete to b, using a
membership criterion based on the galaxy velocity, when available, or on the
galaxy magnitude and colour, otherwise. Such a data set allows us to define
nearly complete samples within a region of 1~\Mpc\ radius, with a sufficient
number of galaxies per sample to make statistical analyses possible. Using this
sample and the {\em ROSAT} PSPC X--ray image of the cluster, we have
re-analyzed the structure and kinematics of Coma, by applying the wavelet and
adaptive kernel techniques. A striking coincidence of features is found in the
distributions of galaxies and hot intracluster gas. The two central dominant
galaxies, NGC4874 and NGC4889, are surrounded by two galaxy groups, mostly
populated with galaxies brighter than b and well separated in
velocity space. On the contrary, the fainter galaxies tend to form a single
smooth structure with a central peak coinciding in position with a secondary
peak detected in X--rays, and located between the two dominant galaxies; we
suggest to identify this structure with the main body of the Coma cluster. A
continuous velocity gradient is found in the central distribution of these
faint galaxies, a probable signature of tidal interactions rather than
rotation. There is evidence for a bound population of bright galaxies around
other brightest cluster members. Altogether, the Coma cluster structure seems
to be better traced by the faint galaxy population, the bright galaxies being
located in subclusters. We discuss this evidence in terms of an ongoing
accretion of groups onto the cluster.Comment: to appear in A&A, 19 pages, uuencoded gzipped postscript fil
Physical mechanisms involved in grooved flat heat pipes: experimental and numerical analyses
International audienceAn experimental database, obtained with flat plate heat pipes (FPHP) with longitudinal grooves is presented. The capillary pressure measured by confocal microscopy and the temperature field in the wall are presented in various experimental conditions (vapour space thickness, filing ratio, heat transfer rate, tilt angle, fluid). Coupled hydrodynamic and thermal models are developed. Experimental results are compared to results of numerical models. Physical mechanisms involved in grooved heat pipes are discussed, including the boiling limit and the effect of the interfacial shear stress. Finally, recommendations for future experimental and theoretical research to increase the knowledge on FPHP are discussed
Recommended from our members
Mars Climate Database version 5
The Mars Climate Database (MCD) is a database of meteorological fields derived from General Circulation Model (GCM) numerical simulations [2,4] of the Martian atmosphere and validated using available observational data. The MCD includes complementary post-processing schemes such as high
spatial resolution interpolation of environmental data and means of reconstructing the variability thereof. The GCM is developed at LMD (Laboratoire de Météorologie Dynamique, Paris, France) in collaboration with several teams in Europe: LATMOS (Laboratoire Atmosphères, Milieux, Observations
Spatiales, Paris, France), the Open University (UK), the Oxford University (UK) and the Instituto de Astrofisica de Andalucia (Spain) with support from the European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). The MCD is freely distributed and intended to be useful and used in the framework of engineering applications as well as in the context of scientific studies which require accurate knowledge of the state of the Martian atmosphere. The Mars Climate Database (MCD) has over the years been distributed to more than 150 teams around the world. With the many improvements implemented in the GCM over the last few years, a new series of reference simulations have been run and compiled in a new version (version 5) of the Mars Climate Database, released in the first half of 2012
The Morphologically Divided Redshift Distribution of Faint Galaxies
We have constructed a morphologically divided redshift distribution of faint
field galaxies using a statistically unbiased sample of 196 galaxies brighter
than I = 21.5 for which detailed morphological information (from the Hubble
Space Telescope) as well as ground-based spectroscopic redshifts are available.
Galaxies are classified into 3 rough morphological types according to their
visual appearance (E/S0s, Spirals, Sdm/dE/Irr/Pec's), and redshift
distributions are constructed for each type. The most striking feature is the
abundance of low to moderate redshift Sdm/dE/Irr/Pec's at I < 19.5. This
confirms that the faint end slope of the luminosity function (LF) is steep
(alpha < -1.4) for these objects. We also find that Sdm/dE/Irr/Pec's are fairly
abundant at moderate redshifts, and this can be explained by strong luminosity
evolution. However, the normalization factor (or the number density) of the LF
of Sdm/dE/Irr/Pec's is not much higher than that of the local LF of
Sdm/dE/Irr/Pec's. Furthermore, as we go to fainter magnitudes, the abundance of
moderate to high redshift Irr/Pec's increases considerably. This cannot be
explained by strong luminosity evolution of the dwarf galaxy populations alone:
these Irr/Pec's are probably the progenitors of present day ellipticals and
spiral galaxies which are undergoing rapid star formation or merging with their
neighbors. On the other hand, the redshift distributions of E/S0s and spirals
are fairly consistent those expected from passive luminosity evolution, and are
only in slight disagreement with the non-evolving model.Comment: 11 pages, 4 figures (published in ApJ
Integrated spectra extraction based on signal-to-noise optimization using Integral Field Spectroscopy
We propose and explore the potential of a method to extract high
signal-to-noise (S/N) integrated spectra related to physical and/or
morphological regions on a 2-dimensional field using Integral Field
Spectroscopy (IFS) observations by employing an optimization procedure based on
either continuum (stellar) or line (nebular) emission features. The
optimization method is applied to a set of IFS VLT-VIMOS observations of
(U)LIRG galaxies, describing the advantages of the optimization by comparing
the results with a fixed-aperture, single spectrum case, and by implementing
some statistical tests. We demonstrate that the S/N of the IFS optimized
integrated spectra is significantly enhanced when compared with the single
aperture unprocessed case. We provide an iterative user-friendly and versatile
IDL algorithm that allows the user to spatially integrate spectra following
more standard procedures. This is made available to the community as part of
the PINGSoft IFS software package.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 7
figure
2-Dust : a Dust Radiative Transfer Code for an Axisymmetric System
We have developed a general purpose dust radiative transfer code for an
axisymmetric system, 2-Dust, motivated by the recent increasing availability of
high-resolution images of circumstellar dust shells at various wavelengths.
This code solves the equation of radiative transfer following the principle of
long characteristic in a 2-D polar grid while considering a 3-D radiation field
at each grid point. A solution is sought through an iterative scheme in which
self-consistency of the solution is achieved by requiring a global luminosity
constancy throughout the shell. The dust opacities are calculated through Mie
theory from the given size distribution and optical properties of the dust
grains. The main focus of the code is to obtain insights on (1) the global
energetics of dust grains in the shell (2) the 2-D projected morphologies that
are strongly dependent on the mixed effects of the axisymmetric dust
distribution and inclination angle of the shell. Here, test models are
presented with discussion of the results. The code can be supplied with a
user-defined density distribution function, and thus, is applicable to a
variety of dusty astronomical objects possessing the axisymmetric geometry.Comment: To be published in ApJ, April 2003 issue; 13 pages, 4 tables, 17
figures, 5-page appendix (no figures for the main text included in this
preprint). For the complete preprint and code distribution, contact the
author
Recommended from our members
Modeling the martian atmosphere with the LMD global climate model
Introduction: For several years we have been developing a 3D Global Climate Model (GCM) for Mars derived from the models used on Earth for weather forecasting or climate changes studies [1]. The purpose of such a project is ambitious: we wish to build a 'Mars simulator' based only on physical equations, with no tailor-made forcing, but able to reproduce all the available observations of the Martian climate (temperatures, winds, but also clouds, dust, ices, chemical species, etc...).
The GCM is constantly evolving, thanks to a contnuous collaboration between several teams based in France (LMD, SA), the UK (The Open University, University of Oxford) and Spain (Instituto de Astrofisica de Andalucia), and with the support of ESA and CNES.
We are currently working on an improved version of the model. Several new parametrisation are included in the heart of the model (radiative transfer, surface and subsurface processes, dynamics) and the applications of the GCM are in contnuous development (Water, dust, CO2, radon cycles, photochemistry, thermosphere, ionosphere, etc...
- …
