54,044 research outputs found

    Long-term Variability Properties and Periodicity Analysis for Blazars

    Get PDF
    In this paper, the compiled long-term optical and infrared measurements of some blazars are used to analyze the variation properties and the optical data are used to search for periodicity evidence in the lightcurve by means of the Jurkevich technique and the discrete correlation function (DCF) method. Following periods are found: 4.52-year for 3C 66A; 1.56 and 2.95 years for AO 0235+164; 14.4, 18.6 years for PKS 0735+178; 17.85 and 24.7 years for PKS 0754+100; 5.53 and 11.75 for OJ 287. 4.45, and 6.89 years for PKS 1215; 9 and 14.84 years for PKS 1219+285; 2.0, 13.5 and 22.5 for 3C273; 7.1 year for 3C279; 6.07 for PKS 1308+326; 3.0 and 16.5 years for PKS 1418+546; 2.0 and 9.35 years for PKS 1514-241; 18.18 for PKS 1807+698; 4.16 and 7.0 for 2155-304; 14 and 20 years for BL Lacertae. Some explanations have been discussed.Comment: 10 pages, 2 table, no figure, a proceeding paper for Pacific Rim Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin

    Twisted flux tube emergence from the convection zone to the corona

    Full text link
    3D numerical simulations of a horizontal magnetic flux tube emergence with different twist are carried out in a computational domain spanning the upper layers of the convection zone to the lower corona. We use the Oslo Staggered Code to solve the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along the magnetic field lines. The emergence of the magnetic flux tube input at the bottom boundary into a weakly magnetized atmosphere is presented. The photospheric and chromospheric response is described with magnetograms, synthetic images and velocity field distributions. The emergence of a magnetic flux tube into such an atmosphere results in varied atmospheric responses. In the photosphere the granular size increases when the flux tube approaches from below. In the convective overshoot region some 200km above the photosphere adiabatic expansion produces cooling, darker regions with the structure of granulation cells. We also find collapsed granulation in the boundaries of the rising flux tube. Once the flux tube has crossed the photosphere, bright points related with concentrated magnetic field, vorticity, high vertical velocities and heating by compressed material are found at heights up to 500km above the photosphere. At greater heights in the magnetized chromosphere, the rising flux tube produces a cool, magnetized bubble that tends to expel the usual chromospheric oscillations. In addition the rising flux tube dramatically increases the chromospheric scale height, pushing the transition region and corona aside such that the chromosphere extends up to 6Mm above the photosphere. The emergence of magnetic flux tubes through the photosphere to the lower corona is a relatively slow process, taking of order 1 hour.Comment: 53 pages,79 figures, Submitted to Ap

    k-Component q-deformed charge coherent states and their nonclassical properties

    Full text link
    k-Component q-deformed charge coherent states are constructed, their (over)completeness proved and their generation explored. The q-deformed charge coherent states and the even (odd) q-deformed charge coherent states are the two special cases of them as k becomes 1 and 2, respectively. A D-algebra realization of the SUq_q(1,1) generators is given in terms of them. Their nonclassical properties are studied and it is shown that for k3k\geq3, they exhibit two-mode q-antibunching, but neither SUq_q(1,1) squeezing, nor one- or two-mode q-squeezing.Comment: LaTeX, 29 pages, 2 Postscript figures, minor change

    Single crystal growth of the pyrochlores R2R_2Ti2_2O7_7 (RR = rare earth) by the optical floating-zone method

    Full text link
    We report a systematic study on the crystal growth of the rare-earth titanates R2R_2Ti2_2O7_7 (RR = Gd, Tb, Dy, Ho, Y, Er, Yb and Lu) and Y-doped Tb2x_{2-x}Yx_xTi2_2O7_7 (xx = 0.2 and 1) using an optical floating-zone method. High-quality single crystals were successfully obtained and the growth conditions were carefully optimized. The oxygen pressure was found to be the most important parameter and the appropriate ones are 0.1--0.4 MPa, depending on the radius of rare-earth ions. The growth rate is another parameter and was found to be 2.5--4 mm/h for different rare-earth ions. X-ray diffraction data demonstrated the good crystallinity of these crystals. The basic physical properties of these crystals were characterized by the magnetic susceptibility and specific heat measurements.Comment: 18 pages, 7 figures, 1 table, published in Journal Crystal Growt

    Post-shock spikes: A new feature of proton and alpha enhancements associated with an interplanetary shock wave

    Get PDF
    Abrupt and prolonged enhancements in the intensities of 100 to approximately 2000 keV nucleon protons and alpha particles observed in interplanetary space are interpreted as particle populations confined between an interplanetary shock front and a magnetic field discontinuity. Prominent intensity spikes observed only below approximately 400 keV per charge for both protons and alpha particles several hours behind the shock front suggest that some fraction of the confined particles is accelerated by an energy per charge dependent process

    Timing Features of the Accretion--driven Millisecond X-Ray Pulsar XTE J1807--294 in 2003 March Outburst

    Full text link
    In order to probe the activity of the inner disk flow and its effect on the neutron star surface emissions, we carried out the timing analysis of the Rossi X-Ray Timing Explorer (RXTE) observations of the millisecond X-ray pulsar XTE J1807--294, focusing on its correlated behaviors in X-ray intensities, hardness ratios, pulse profiles and power density spectra. The source was observed to have a serial of broad "puny" flares on a timescale of hours to days on the top of a decaying outburst in March 2003. In the flares, the spectra are softened and the pulse profiles become more sinusoidal. The frequency of kilohertz quasi-periodic oscillation (kHz QPO) is found to be positively related to the X-ray count rate in the flares. These features observed in the flares could be due to the accreting flow inhomogeneities. It is noticed that the fractional pulse amplitude increases with the flare intensities in a range of 2\sim 2%-14%, comparable to those observed in the thermonuclear bursts of the millisecond X-ray pulsar XTE J1814--338, whereas it remains at about 6.5% in the normal state. Such a significant variation of the pulse profile in the "puny" flares may reflect the changes of physical parameters in the inner disk accretion region. Furthermore, we noticed an overall positive correlation between the kHz QPO frequency and the fractional pulse amplitude, which could be the first evidence representing that the neutron-star surface emission properties are very sensitive to the disk flow inhomogeneities. This effect should be cautiously considered in the burst oscillation studies.Comment: Accepted by ApJ, 23 pages, 7 figures, 3 table

    Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    Get PDF
    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2Si particles evenly distributed throughout an α-Al matrix with a β-Al 3Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS

    Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt
    corecore