356 research outputs found

    INTEGRAL and Magnetars

    Get PDF
    Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and studied in detail for the first time at hard-X/soft-gamma rays. SGR 1806-20, lying close to the Galactic Centre, and being very active in the past two years, has provided a wealth of new INTEGRAL results, which we will summarise here: more than 300 short bursts have been observed from this source and their characteristics have been studied with unprecedented sensitivity in the 15-200 keV range. A hardness-intensity anticorrelation within the bursts has been discovered and the overall Number-Intensity distribution of the bursts has been determined. The increase of its bursting activity eventually led to the December 2004 Giant Flare for which a possible soft gamma-ray (>80 keV) early afterglow has been detected with INTEGRAL. The deep observations allowed us to discover the persistent emission in hard X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in quiescent state, and to directly compare the spectral characteristics of all Magnetars (two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 9 figures, Proceedings of the 6th INTEGRAL Workshop, Moscow, 2006 07 03-07, ESA SP-62

    IGR J08408--4503: a new recurrent Supergiant Fast X-ray Transient

    Full text link
    The supergiant fast X-ray transient IGR J08408-4503 was discovered by INTEGRAL on May 15, 2006, during a bright flare. The source shows sporadic recurrent short bright flares, reaching a peak luminosity of 10^36 erg s^-1 within less than one hour. The companion star is HD 74194, an Ob5Ib(f) supergiant star located at 3 kpc in the Vela region. We report the light curves and broad-band spectra (0.1-200 keV) of all the three flares of IGR J08408-4503 detected up to now based on INTEGRAL and Swift data. The flare spectra are well described by a power-law model with a high energy cut-off at ~15 keV. The absorption column density during the flares was found to be ~10^21 cm^-2, indicating a very low matter density around the compact object. Using the supergiant donor star parameters, the wind accretion conditions imply an orbital period of the order of one year, a spin period of the order of hours and a magnetic field of the order of 10^13 G.Comment: 5 pages, 2 figures, accepted for publication in Astrophysical Journal Letter

    Monoclonal Antibodies against Accumulation-Associated Protein Affect EPS Biosynthesis and Enhance Bacterial Accumulation of Staphylococcus epidermidis

    Get PDF
    Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap) that contains sequence repeats known as G5 domains, which are responsible for the Zn2+-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs) against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5) were generated. MAb18B6 inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb25C11 and MAb20B9 enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb18B6, which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb25C11 and MAb20B9. Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA) biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections

    Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of biofilm formation seems to play an essential role in the virulence of coagulase-negative staphylococci (CNS). The most clearly characterized component of staphylococcal biofilms is the polysaccharide intercellular adhesin (PIA) encoded by the <it>icaADBC </it>operon. Biofilm production was studied in 80 coagulase-negative staphylococci (CNS) strains isolated from clinical specimens of newborns with infection hospitalized at the Neonatal Unit of the University Hospital, Faculty of Medicine of Botucatu, and in 20 isolates obtained from the nares of healthy individuals without signs of infection. The objective was to compare three phenotypic methods with the detection of the <it>icaA</it>, <it>icaD </it>and <it>icaC </it>genes by PCR.</p> <p>Findings</p> <p>Among the 100 CNS isolates studied, 82% tested positive by PCR, 82% by the tube test, 81% by the TCP assay, and 73% by the CRA method. Using PCR as a reference, the tube test showed the best correlation with detection of the <it>ica </it>genes, presenting high sensitivity and specificity.</p> <p>Conclusions</p> <p>The tube adherence test can be indicated for the routine detection of biofilm production in CNS because of its easy application and low cost and because it guarantees reliable results with excellent sensitivity and specificity.</p

    Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    Get PDF
    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources.Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont.Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control

    Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach

    Get PDF
    The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations
    corecore