253 research outputs found
Abrasive waterjet machining of three-dimensional structures from bulk metallic glasses and comparison with other techniques
Bulk metallic glasses (BMGs) are a promising class of engineering materials, but they can be difficult to machine due to high hardness and a metastable structure. Crystallization due to machining can have negative effects, such as a decreased load-bearing capacity of fabricated parts, and thus should be avoided. Here, a Zr-based BMG was machined using abrasive waterjet (AWJ), electrical discharge, ns-pulsed laser engraving, and conventional dry-milling techniques. Characterization of the processed material indicated that AWJ preserves the amorphous phase and provides the combination of speed and flexibility required to rapidly fabricate small three-dimensional parts, while the other techniques did not achieve these goals. As proof-of-principle, a screw, similar to an orthopedic implant, was rapidly machined from the BMG using AW
Imaging with two spiral diffracting elements intermediated by a pinhole
A pseudoscopic (inverted depth) image made with spiral diffracting elements
intermediated by a pinhole is explained by its symmetry properties. The whole
process is made under common white light illumination and allows the projection
of images. The analysis of this projection demonstrates that the images of two
objects pointing away longitudinally have the main features of standard
pseudoscopic image points. An orthoscopic (normal depth) image has also been
obtained with the breaking of the symmetry conditions.Comment: 21 pages, 13 figures, 4 table
High sensitivity (1)H-NMR spectroscopy of homeopathic remedies made in water
BACKGROUND: The efficacy of homeopathy is controversial. Homeopathic remedies are made via iterated shaking and dilution, in ethanol or in water, from a starting substance. Remedies of potency 12 C or higher are ultra-dilute (UD), i.e. contain zero molecules of the starting material. Various hypotheses have been advanced to explain how a UD remedy might be different from unprepared solvent. One such hypothesis posits that a remedy contains stable clusters, i.e. localized regions where one or more hydrogen bonds remain fixed on a long time scale. High sensitivity proton nuclear magnetic resonance spectroscopy has not previously been used to look for evidence of differences between UD remedies and controls. METHODS: Homeopathic remedies made in water were studied via high sensitivity proton nuclear magnetic resonance spectroscopy. A total of 57 remedy samples representing six starting materials and spanning a variety of potencies from 6 C to 10 M were tested along with 46 controls. RESULTS: By presaturating on the water peak, signals could be reliably detected that represented H-containing species at concentrations as low as 5 ÎŒM. There were 35 positions where a discrete signal was seen in one or more of the 103 spectra, which should theoretically have been absent from the spectrum of pure water. Of these 35, fifteen were identified as machine-generated artifacts, eight were identified as trace levels of organic contaminants, and twelve were unexplained. Of the unexplained signals, six were seen in just one spectrum each. None of the artifacts or unexplained signals occurred more frequently in remedies than in controls, using a p < .05 cutoff. Some commercially prepared samples were found to contain traces of one or more of these small organic molecules: ethanol, acetate, formate, methanol, and acetone. CONCLUSION: No discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity (1)H-NMR spectroscopy. The results failed to support a hypothesis that remedies made in water contain long-lived non-dynamic alterations of the H-bonding pattern of the solvent
Cardiac phase-resolved late gadolinium enhancement imaging
Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varying T(1) weighting. (2) Generation of semi-quantitative T(*)(1) maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%. In-vivo results show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40â60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use
Density Fluctuations in an Electrolyte from Generalized Debye-Hueckel Theory
Near-critical thermodynamics in the hard-sphere (1,1) electrolyte is well
described, at a classical level, by Debye-Hueckel (DH) theory with (+,-) ion
pairing and dipolar-pair-ionic-fluid coupling. But DH-based theories do not
address density fluctuations. Here density correlations are obtained by
functional differentiation of DH theory generalized to {\it non}-uniform
densities of various species. The correlation length diverges universally
at low density as (correcting GMSA theory). When
one has as
where the amplitudes compare informatively with experimental data.Comment: 5 pages, REVTeX, 1 ps figure included with epsf. Minor changes,
references added. Accepted for publication in Phys. Rev. Let
Determination of the optical bandgap and disorder energies of thin amorphous SiC and AlN films produced by radio frequency magnetron sputtering
Amorphous aluminum nitrite and silicon carbide (a-AlN and a-SiC) thin films were prepared by radio frequency magnetron sputtering. Due to the deposition method and production conditions the deposited films grown in amorphous state. We systematically measure the optical bandgap through optical transmission spectroscopy and its change with a cumulative thermal annealing. The results show a linear relation between the Tauc-gap and the Tauc-slope for both AlN and SiC films, which can be explained analytically from the existence of an Urbach focus, and therefore can be used to determine the Urbach focus or to ensure the correct usage of the bandgap determination methods
Ginzburg Criterion for Coulombic Criticality
To understand the range of close-to-classical critical behavior seen in
various electrolytes, generalized Debye-Hueckel theories (that yield density
correlation functions) are applied to the restricted primitive model of
equisized hard spheres. The results yield a Landau-Ginzburg free-energy
functional for which the Ginzburg criterion can be explicitly evaluated. The
predicted scale of crossover from classical to Ising character is found to be
similar in magnitude to that derived for simple fluids in comparable fashion.
The consequences in relation to experiments are discussed briefly.Comment: 4 pages, revtex, 2 tables (latex2.09 required due to revtex's
incompatibility with latex2e tables
- âŠ