11 research outputs found

    Molecular modelling predicts that 2-methoxyestradiol disrupts HIF function by binding to the PAS-B domain

    No full text
    An estradiol metabolite, 2-methoxyestradiol (2ME), has emerged as an important regulator of ovarian physiology. 2ME is recognized as a potent anti-angiogenic agent in clinical trials and laboratory studies. However, little is known about its molecular actions and its endogenous targets. 2ME is produced by human ovarian cells during the normal menstrual cycle, being higher during regression of the corpus luteum, and is postulated to be involved in the anti-angiogenic process that plays out during luteolysis. We utilized cell biology techniques to understand the molecular mechanism of 2ME anti-angiogenic effects on human granulosa luteal cells. The principal effect of 2ME was to alter Hypoxia Inducible Factor 1A (HIF1A) sub-cellular localization. Molecular modelling and multiple bioinformatics tools indicated that 2ME impairs Hypoxia Inducible Factor complex (HIF) nuclear translocation by binding to a buried pocket in the HIF1A Per Arnt Sim (PAS)-B domain. Binding of 2ME to HIF1A

    The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels

    No full text
    © 2018 García et al. Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow volta
    corecore