17 research outputs found
First wave of COVID-19 in Venezuela:Epidemiological, clinical, and paraclinical characteristics of first cases
The coronavirus disease 2019 (COVID-19) pandemic has particularly affected countries with weakened health services in Latin America, where proper patient management could be a critical step to address the epidemic. In this study, we aimed to characterize and identify which epidemiological, clinical, and paraclinical risk factors defined COVID-19 infection from the first confirmed cases through the first epidemic wave in Venezuela. A retrospective analysis of consecutive suspected cases of COVID-19 admitted to a sentinel hospital was carried out, including 576 patient cases subsequently confirmed for severe acute respiratory syndrome coronavirus 2 infection. Of these, 162 (28.1%) patients met the definition criteria for severe/critical disease, and 414 (71.2%) were classified as mild/moderate disease. The mean age was 47 (SD 16) years, the majority of which were men (59.5%), and the most frequent comorbidity was arterial hypertension (23.3%). The most common symptoms included fever (88.7%), headache (65.6%), and dry cough (63.9%). Severe/critical disease affected mostly older males with low schooling (p < 0.001). Similarly, higher levels of glycemia, urea, aminotransferases, total bilirubin, lactate dehydrogenase, and erythrocyte sedimentation rate were observed in severe/critical disease patients compared to those with mild/moderate disease. Overall mortality was 7.6% (44/576), with 41.7% (28/68) dying in hospital. We identified risk factors related to COVID-19 infection, which could help healthcare providers take appropriate measures and prevent severe clinical outcomes. Our results suggest that the mortality registered by this disease in Venezuela during the first epidemic wave was underestimated. An increase in fatalities is expected to occur in the coming months unless measures that are more effective are implemented to mitigate the epidemic while the vaccination process is ongoing
CKD-MBD after kidney transplantation
Successful kidney transplantation corrects many of the metabolic abnormalities associated with chronic kidney disease (CKD); however, skeletal and cardiovascular morbidity remain prevalent in pediatric kidney transplant recipients and current recommendations from the Kidney Disease Improving Global Outcomes (KDIGO) working group suggest that bone disease—including turnover, mineralization, volume, linear growth, and strength—as well as cardiovascular disease be evaluated in all patients with CKD. Although few studies have examined bone histology after renal transplantation, current data suggest that bone turnover and mineralization are altered in the majority of patients and that biochemical parameters are poor predictors of bone histology in this population. Dual energy X-ray absorptiometry (DXA) scanning, although widely performed, has significant limitations in the pediatric transplant population and values have not been shown to correlate with fracture risk; thus, DXA is not recommended as a tool for the assessment of bone density. Newer imaging techniques, including computed tomography (quantitative CT (QCT), peripheral QCT (pQCT), high resolution pQCT (HR-pQCT) and magnetic resonance imaging (MRI)), which provide volumetric assessments of bone density and are able to discriminate bone microarchitecture, show promise in the assessment of bone strength; however, future studies are needed to define the value of these techniques in the diagnosis and treatment of renal osteodystrophy in pediatric renal transplant recipients
Proteinuria and hypoalbuminemia are risk factors for thromboembolic events in patients with idiopathic membranous nephropathy: an observational study
<p>Abstract</p> <p>Background</p> <p>Patients with nephrotic syndrome are at an increased risk of thromboembolic events (TEs). However, this association has not been thoroughly investigated in adult patients with idiopathic membranous nephropathy (IMN).</p> <p>Methods</p> <p>A retrospective analysis of all 101 consecutive adult patients with MN diagnosed at our centre during 1995 to 2008 was performed. Pertinent data including thromboembolic events and the risk factors for TEs were recorded.</p> <p>Results</p> <p>The cohort was followed for 7.2 ± 3 years. Out of 78 patients with IMN, 15 (19.2%) had at least one TE. No TEs occurred six months after diagnosis. The incidence of TEs in the first 6 months of diagnosis was 7.69% (95%CI, 2.5-17.0) and all patients except one had venous TEs. At the time of diagnosis of MN, the patients with TEs had lower serum albumin (1.9 ± 0.5 vs. 2.4 ± 0.4 g/dl, TE vs. no TE; p < 0.01) and greater serum cholesterol (414 ± 124 vs. 317 ± 108 mg/dl, TE vs. no TE; p = 0.01) and 24-h proteinuria (10.7 ± 3 vs. 7.1 ± 4 g, TE vs. no TE; p < 0.01). Multivariate logistic regression adjusted for age, sex, cholesterol and creatinine revealed, an odds ratio of 0.8 (95% CI 0.7 – 0.96; p = 0.01) for every one g/dl increase in baseline serum albumin and, an odds ratio of 1.3 (95% CI 1.05-1.58; p = 0.01) for one gram increase in 24-h proteinuria, for TEs.</p> <p>Conclusions</p> <p>Our study finding confirms IMN as a prothrombotic state particularly in the first six months of diagnosis. Proteinuria, in addition to hypoalbuminemia, is a risk factor for TEs. These results have important implications for clinical care of patients with IMN, particularly with regards to initiation and duration of prophylactic anticoagulation.</p
Pulmonary thrombosis as the first manifestation of systemic lupus erythematosus in a 14-year-old boy
Phosphate and FGF-23 homeostasis after kidney transplantation
Dysregulated phosphate metabolism is a common consequence of chronic kidney disease, and is characterized by a high circulating level of fibroblast growth factor (FGF)-23, hyperparathyroidism, and hyperphosphataemia. Kidney transplantation can elicit specific alterations to phosphate metabolism that evolve over time, ranging from severe hypophosphataemia (1.50 mmol/l) and high FGF-23 levels. The majority of renal transplant recipients develop hypophosphataemia during the first 3 months after transplantation as a consequence of relatively slow adaptation of FGF-23 and parathyroid hormone levels to restored renal function, and the influence of immunosuppressive drugs. By 3-12 months after transplantation, phosphate homeostasis is at least partially restored in the majority of recipients, which is paralleled by a substantially reduced risk of cardiovascular-associated morbidity and mortality compared with the pre-transplantation setting. Many renal transplant recipients, however, exhibit persistent abnormalities in phosphate homeostasis, which is often due to multifactorial causes, and may contribute to adverse outcomes on the cardiovascular system, kidney, and bone. Dietary and pharmacologic interventions might improve phosphate homeostasis in renal transplant recipients, but additional insight into the pathophysiology of transplantation-associated abnormalities in phosphate homeostasis is needed to further optimize disease management and improve prognosis for renal transplant recipients