520 research outputs found

    Chiral Light Emission from a Sphere Revealed by Nanoscale Relative Phase Mapping

    Full text link
    Circularly polarized light (CPL) is currently receiving much attention as a key ingredient for next-generation information technologies, such as quantum communication and encryption. CPL photon generation for such applications is commonly realized by coupling achiral optical quantum emitters to chiral nanoantennas. Here, we explore a different strategy consisting in exciting a nanosphere -- the ultimate symmetric structure -- to produce all-directional CPL emission. Specifically, we demonstrate chiral emission from a silicon nanosphere induced by an electron beam based on two different strategies: dissolving the degeneracy of orthogonal dipole modes, and interference of electric and magnetic modes. We prove these concepts by visualizing the phase and polarization using a newly developed polarimetric four-dimensional cathodoluminescence method. Besides their fundamental interest, our results support the use of free-electron-induced light emission from spherically symmetric systems as a versatile platform for the generation of chiral light with on-demand control over the phase and degree of polarization

    Simultaneous nanoscale excitation and emission mapping by cathodoluminescence

    Full text link
    Free-electron-based spectroscopies can reveal the nanoscale optical properties of semiconductor materials and nanophotonic devices with a spatial resolution far beyond the diffraction limit of light. However, the retrieved spatial information is constrained to the excitation space defined by the electron beam position, while information on the delocalization associated with the spatial extension of the probed optical modes in the specimen has so far been missing, despite its relevance in ruling the optical properties of nanostructures. In this study, we demonstrate a cathodoluminescence method that can access both excitation and emission spaces at the nanoscale, illustrating the power of such simultaneous excitation and emission mapping technique by revealing a sub-wavelength emission position modulation as well as by visualizing electromagnetic energy transport in nanoplasmonic systems. Besides the fundamental interest of these results, our technique grants us access into previously inaccessible nanoscale optical properties

    Immunoelectron Microscopic Characterization of Vasopressin-Producing Neurons in the Hypothalamo-Pituitary Axis of Non-Human Primates by Use of Formaldehyde-Fixed Tissues Stored at-25 degrees C for Several Years

    Get PDF
    Translational research often requires the testing of experimental therapies in primates, but research in non-human primates is now stringently controlled by law around the world. Tissues fixed in formaldehyde without glutaraldehyde have been thought to be inappropriate for use in electron microscopic analysis, particularly those of the brain. Here we report the immunoelectron microscopic characterization of arginine vasopressin (AVP)-producing neurons in macaque hypothalamo-pituitary axis tissues fixed by perfusion with 4% formaldehyde and stored at -25 degrees C for several years (4-6 years). The size difference of dense-cored vesicles between magnocellular and parvocellular AVP neurons was detectable in their cell bodies and perivascular nerve endings located, respectively, in the posterior pituitary and median eminence. Furthermore, glutamate and the vesicular glutamate transporter 2 could be colocalized with AVP in perivascular nerve endings of both the posterior pituitary and the external layer of the median eminence, suggesting that both magnocellular and parvocellular AVP neurons are glutamatergic in primates. Both ultrastructure and immunoreactivity can therefore be sufficiently preserved in macaque brain tissues stored long-term, initially for light microscopy. Taken together, these results suggest that this methodology could be applied to the human post-mortem brain and be very useful in translational research

    Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord

    Get PDF
    Oxytocinergic neurons in the paraventricular nucleus of the hypothalamus that project to extrahypothalamic brain areas and the lumbar spinal cord play an important role in the control of erectile function and male sexual behavior in mammals. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the “spinal ejaculation generator (SEG).” We have examined the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system in rats. Here, we show that SEG/GRP neurons express oxytocin receptors and are activated by oxytocin during male sexual behavior. Intrathecal injection of oxytocin receptor antagonist not only attenuates ejaculation but also affects pre-ejaculatory behavior during normal sexual activity. Electron microscopy of potassium-stimulated acute slices of the lumbar cord showed that oxytocin-neurophysin-immunoreactivity was detected in large numbers of neurosecretory dense-cored vesicles, many of which are located close to the plasmalemma of axonal varicosities in which no electron-lucent microvesicles or synaptic membrane thickenings were visible. These results suggested that, in rats, release of oxytocin in the lumbar spinal cord is not limited to conventional synapses but occurs by exocytosis of the dense-cored vesicles from axonal varicosities and acts by diffusion—a localized volume transmission—to reach oxytocin receptors on GRP neurons and facilitate male sexual function

    Variation of pro‐vasopressin processing in parvocellular and magnocellular neurons in the paraventricular nucleus of the hypothalamus: Evidence from the vasopressin‐related glycopeptide copeptin

    Get PDF
    Arginine vasopressin (AVP) is synthesized in parvocellular‐ and magnocellular neuroendocrine neurons in the paraventricular nucleus (PVN) of the hypothalamus. Whereas magnocellular AVP neurons project primarily to the posterior pituitary, parvocellular AVP neurons project to the median eminence (ME) and to extrahypothalamic areas. The AVP gene encodes pre‐pro‐AVP that comprises the signal peptide, AVP, neurophysin (NPII), and a copeptin glycopeptide. In the present study, we used an N‐terminal copeptin antiserum to examine copeptin expression in magnocellular and parvocellular neurons in the hypothalamus in the mouse, rat, and macaque monkey. Although magnocellular NPII‐expressing neurons exhibited strong N‐terminal copeptin immunoreactivity in all three species, a great majority (~90%) of parvocellular neurons that expressed NPII was devoid of copeptin immunoreactivity in the mouse, and in approximately half (~53%) of them in the rat, whereas in monkey hypothalamus, virtually all NPII‐immunoreactive parvocellular neurons contained strong copeptin immunoreactivity. Immunoelectron microscopy in the mouse clearly showed copeptin‐immunoreactivity co‐localized with NPII‐immunoreactivity in neurosecretory vesicles in the internal layer of the ME and posterior pituitary, but not in the external layer of the ME. Intracerebroventricular administration of a prohormone convertase inhibitor, hexa‐d‐arginine amide resulted in a marked reduction of copeptin‐immunoreactivity in the NPII‐immunoreactive magnocellular PVN neurons in the mouse, suggesting that low protease activity and incomplete processing of pro‐AVP could explain the disproportionally low levels of N‐terminal copeptin expression in rodent AVP (NPII)‐expressing parvocellular neurons. Physiologic and phylogenetic aspects of copeptin expression among neuroendocrine neurons require further exploration

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    Nonequilibrium Weak Processes in Kaon Condensation I --- Reaction rate for the thermal kaon process ---

    Full text link
    We investigate the thermal kaon process,in which kaons are thermally produced via nucleon-nucleon collisions.This process is relevant to nonequilibrium dynamics of kaon condensation inside neutron stars.The reaction rates for these processes are calculated, and their temperature and density dependences are compared with those of other reaction rates.It is shown that the thermal kaon process is dominant over other relevant weak reactions throughout the nonequilibrium process, such as the kaon-induced Urca and the modified Urca reactions, and may control the entire evolution of the kaon condensate. The characteristic role of the soft and hard kaons during the evolution is explained, and implications for astrophysical phenomena are briefly discussed.Comment: 31 pages,incl.10 eps figures,RevTe

    A stochastic model of Echinococcus multilocularis transmission in Hokkaido, Japan, focusing on the infection process

    Get PDF
    Echinococcus multilocularis causes human alveolar echinococcus. In Japan, high prevalence of E. multilocularis among the fox population has been reported throughout Hokkaido. Accordingly, control measures, such as fox hunting and the distribution of bait containing Praziquantel, have been conducted. This study developed a transmission model for individuals in the fox population and included a stochastic infection process to assess the prevalence of E. multilocularis. To make our model realistic, we used the worm burden for each individual in the fox population. We assumed that the worm burden depends on the number of protoscoleces in a predated vole and the number of infection experiences. We carried out stochastic simulations with 1,000 trials for the situations of Koshimizu and Sapporo, Hokkaido, Japan. The distribution of the worm burden among foxes obtained using the model agreed with dissection data. The simulation indicates that a careful choice of season is necessary for an effective distribution of Praziquantel-containing bait. A stochastic model for E. multilocularis, which can assess the range of the prevalence in the fox population, would be helpful in analyzing their complex life-cycle and also in designing control strategies.</p

    Neutrino Opacities in Neutron Stars with Kaon Condensates

    Get PDF
    The neutrino mean free paths in hot neutron-star matter are obtained in the presence of kaon condensates. The kaon-induced neutrino absorption process, which is allowed only in the presence of kaon condensates, is considered for both nondegenerate and degenerate neutrinos. The neutrino mean free path due to this process is compared with that for the neutrino-nucleon scattering. While the mean free path for the kaon-induced neutrino absorption process is shown to be shorter than the ordinary two-nucleon absorption process by several orders of magnitude when temperature is not very high, the neutrino-nucleon scattering process has still a dominant contribution to the neutrino opacity. Thus, the kaon-induced neutrino absorption process has a minor effect on the thermal and dynamical evolution of protoneutron stars.Comment: 35 pages, 4 figure
    corecore