2,152 research outputs found

    AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations

    Get PDF
    This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event

    Effect of next-nearest neighbor coupling on the optical spectra in bilayer graphene

    Full text link
    We investigate the dependence of the optical conductivity of bilayer graphene (BLG) on the intra- and inter-layer interactions using the most complete model to date. We show that the next nearest-neighbor intralayer coupling introduces new features in the low-energy spectrum that are highly sensitive to sample doping, changing significantly the ``universal'' conductance. Further, its interplay with interlayer couplings leads to an anisotropy in conductance in the ultraviolet range. We propose that experimental measurement of the optical conductivity of intrinsic and doped BLG will provide a good benchmark for the relative importance of intra- and inter-layer couplings at different doping levels.Comment: 5 pages, 5 figure

    Intrinsic response time of graphene photodetectors

    Get PDF
    Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts, it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal-graphene-metal photodetectors with monolayer graphene using an optical correlation technique with ultrashort laser pulses. We obtain a response time of 2.1 ps that is mainly given by the short lifetime of the photogenerated carriers. This time translates into a bandwidth of ~262 GHz. Moreover, we investigate the dependence of the response time on gate voltage and illumination laser power

    Spatial coherence measurement of a high average power table-top soft X-ray laser

    Get PDF
    Includes bibliographical references (page 126).An extraordinarily high degree of spatial coherence from a high average power tabletop 46.9 nm laser was observed in two-pinhole interference experiments. Refractive anti-guiding and gain guiding along a capillary discharge-produced plasma column causes a rapid increase of the spatial coherence with amplifier length. Full spatial coherence was approached with a 36 cm long plasma of very high axial uniformity and a length to diameter ratio exceeding 1000: 1

    Photo-disintegration cross section measurements on 186^{186}W, 187^{187}Re and 188^{188}Os: Implications for the Re-Os cosmochronology

    Full text link
    Cross sections of the 186^{186}W, 187^{187}Re, 188^{188}Os(γ,n\gamma,n) reactions were measured using quasi-monochromatic photon beams from laser Compton scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are compared with the predictions of Hauser-Feshbach statistical calculations using four different sets of input parameters. In addition, the inverse neutron capture cross sections were evaluated by constraining the model parameters, especially the E1E1 strength function, on the basis of the experimental data. The present experiment helps to further constrain the correction factor FσF_{\sigma} for the neutron capture on the 9.75 keV state in 187^{187}Os. Implications of FσF_{\sigma} to the Re-Os cosmochronology are discussed with a focus on the uncertainty in the estimate of the age of the Galaxy.Comment: 11 page

    On the size-dependent fatigue behaviour of laser powder bed fusion Ti-6Al-4V

    Get PDF
    A sample size effect which influences the fatigue behaviour of laser powder bed fusion Ti-6Al-4V is identified and quantified. Two cylindrical samples are considered: ∅ 1.3 mm and ∅ 2.0 mm. The larger specimen demonstrates better fatigue resistance particularly in the high-cycle regime, with the differing surface roughness contributing to this effect. It is also confirmed that processing-induced porosity can compromise the fatigue performance even when the initiation sites are surface defects. The larger contribution of porosity to the fatigue fracture process of the larger specimen results in a higher scatter in the fatigue life. Differences in microstructure do not seem to contribute strongly to the variation in fatigue properties of the two specimens, but we present some evidence that the coarser microstructure of the larger specimen promotes a stronger tolerance to defects and induces more tortuous crack paths which hinders fatigue crack growth

    Pair production of the T-odd leptons at the LHC

    Full text link
    The T-odd leptons predicted by the littlest HiggsHiggs model with T-parity can be pair produced via the subprocesses ggH+Hgg\to \ell^{+}_{H}\ell^{-}_{H}, qqˉH+Hq\bar{q}\to \ell^{+}_{H}\ell^{-}_{H}, γγH+H\gamma\gamma\to \ell^{+}_{H}\ell^{-}_{H} and VVH+H VV \to \ell^{+}_{H}\ell^{-}_{H} (VV=WW or ZZ) at the CERNCERN Large Hadron Collider (LHC)(LHC). We estimate the hadronic production cross sections for all of these processes and give a simply phenomenology analysis. We find that the cross sections for most of the above processes are very small. However, the value of the cross section for the DrellYanDrell-Yan process qqˉH+Hq\bar{q}\to \ell^{+}_{H}\ell^{-}_{H} can reach 270fb270fb.Comment: 12 pages, 2 figure
    corecore