4,521 research outputs found

    Attosecond nanoplasmonic streaking of localized fields near metal nanospheres

    Full text link
    Collective electron dynamics in plasmonic nanosystems can unfold on timescales in the attosec- ond regime and the direct measurements of plasmonic near-field oscillations is highly desirable. We report on numerical studies on the application of attosecond nanoplasmonic streaking spectroscopy to the measurement of collective electron dynamics in isolated Au nanospheres. The plasmonic field oscillations are induced by a few-cycle NIR driving field and are mapped by the energy of photoemitted electrons using a synchronized, time-delayed attosecond XUV pulse. By a detailed analysis of the amplitudes and phase shifts, we identify the different regimes of nanoplasmonic streaking and study the dependence on particle size, XUV photoelectron energy and emission position. The simulations indicate that the near-fields around the nanoparticles can be spatio-temporally reconstructed and may give detailed insight into the build-up and decay of collective electron motion.Comment: Revised versio

    On the Experimental Estimation of Surface Enhanced Raman Scattering (SERS) Cross Sections by Vibrational Pumping

    Get PDF
    We present an in-depth analysis of the experimental estimation of cross sections in Surface Enhanced Raman Scattering (SERS) by vibrational pumping. The paper highlights the advantages and disadvantages of the technique, pinpoints the main aspects and limitations, and provides the underlying physical concepts to interpret the experimental results. Examples for several commonly used SERS probes are given, and a discussion on future possible developments is also presented.Comment: To be submitted to J. Phys. Chem.

    Scattering by nonspherical systems

    Get PDF
    Scattering by nonspherical particles with size of order of wavelength - scattering by axisymmetric penetrable particles using approximate matching of boundary condition

    Free Quarks and Antiquarks versus Hadronic Matter

    Full text link
    Meson-meson reactions A(q_1 \bar{q}_1) + B(q_2 \bar{q}_2) to q_1 + \bar{q}_1 + q_2 + \bar{q}_2 in high-temperature hadronic matter are found to produce an appreciable amount of quarks and antiquarks freely moving in hadronic matter and to establish a new mechanism for deconfinement of quarks and antiquarks in hadronic matter.Comment: 9 pages, 3 figure

    Time-Dependent Eddy-Mean Energy Diagrams and Their Application to the Ocean

    Get PDF
    Insight into the global ocean energy cycle and its relationship to climate variability can be gained by examining the temporal variability of eddy–mean flow interactions. A time-dependent version of the Lorenz energy diagram is formulated and applied to energetic ocean regions from a global, eddying state estimate. The total energy in each snapshot is partitioned into three components: energy in the mean flow, energy in eddies, and energy temporal anomaly residual, whose time mean is zero. These three terms represent, respectively, correlations between mean quantities, correlations between eddy quantities, and eddy-mean correlations. Eddy–mean flow interactions involve energy exchange among these three components. The temporal coherence about energy exchange during eddy–mean flow interactions is assessed. In the Kuroshio and Gulf Stream Extension regions, a suppression relation is manifested by a reduction in the baroclinic energy pathway to the eddy kinetic energy (EKE) reservoir following a strengthening of the barotropic energy pathway to EKE; the baroclinic pathway strengthens when the barotropic pathway weakens. In the subtropical gyre and Southern Ocean, a delay in energy transfer between different reservoirs occurs during baroclinic instability. The delay mechanism is identified using a quasigeostrophic, two-layer model; part of the potential energy in large-scale eddies, gained from the mean flow, cascades to smaller scales through eddy stirring before converting to EKE. The delay time is related to this forward cascade and scales linearly with the eddy turnover time. The relation between temporal variations in wind power input and eddy–mean flow interactions is also assessed

    Density Fluctuation Effects on Collective Neutrino Oscillations in O-Ne-Mg Core-Collapse Supernovae

    Full text link
    We investigate the effect of matter density fluctuations on supernova collective neutrino flavor oscillations. In particular, we use full multi-angle, 3-flavor, self-consistent simulations of the evolution of the neutrino flavor field in the envelope of an O-Ne-Mg core collapse supernova at shock break-out (neutrino neutronization burst) to study the effect of the matter density "bump" left by the He-burning shell. We find a seemingly counterintuitive increase in the overall electron neutrino survival probability created by this matter density feature. We discuss this behavior in terms of the interplay between the matter density profile and neutrino collective effects. While our results give new insights into this interplay, they also suggest an immediate consequence for supernova neutrino burst detection: it will be difficult to use a burst signal to extract information on fossil burning shells or other fluctuations of this scale in the matter density profile. Consistent with previous studies, our results also show that the interplay of neutrino self-coupling and matter fluctuation could cause a significant increase in the electron neutrino survival probability at very low energyComment: 12 pages, 11 figures. This is a pre-submission version of the pape
    • …
    corecore