11,609 research outputs found
The role of avatars in e-government interfaces
This paper investigates the use of avatars to communicate live message in e-government interfaces. A comparative study is presented that evaluates the contribution of multimodal metaphors (including avatars) to the usability of interfaces for e-government and user trust. The communication metaphors evaluated included text, earcons, recorded speech and avatars. The experimental platform used for the experiment involved two interface versions with a sample of 30 users. The results demonstrated that the use of multimodal metaphors in an e-government interface can significantly contribute to enhancing the usability and increase trust of users to the e-government interface. A set of design guidelines, for the use of multimodal metaphors in e-government interfaces, was also produced
Interacting spin-1 bosons in a two-dimensional optical lattice
We study, using quantum Monte Carlo (QMC) simulations, the ground state
properties of spin-1 bosons trapped in a square optical lattice. The phase
diagram is characterized by the mobility of the particles (Mott insulating or
superfluid phase) and by their magnetic properties. For ferromagnetic on-site
interactions, the whole phase diagram is ferromagnetic and the Mott
insulators-superfluid phase transitions are second order. For antiferromagnetic
on-site interactions, spin nematic order is found in the odd Mott lobes and in
the superfluid phase. Furthermore, the superfluid-insulator phase transition is
first or second order depending on whether the density in the Mott is even or
odd. Inside the even Mott lobes, we observe a singlet-to-nematic transition for
certain values of the interactions. This transition appears to be first order
Two-photon Rabi-Hubbard and Jaynes-Cummings-Hubbard models: photon pair superradiance, Mott insulator and normal phases
We study the ground state phase diagrams of two-photon Dicke, the
one-dimensional Jaynes-Cummings-Hubbard (JCH), and Rabi-Hubbard (RH) models
using mean field, perturbation, quantum Monte Carlo (QMC), and density matrix
renormalization group (DMRG) methods. We first compare mean field predictions
for the phase diagram of the Dicke model with exact QMC results and find
excellent agreement. The phase diagram of the JCH model is then shown to
exhibit a single Mott insulator lobe with two excitons per site, a superfluid
(SF, superradiant) phase and a large region of instability where the
Hamiltonian becomes unbounded. Unlike the one-photon model, there are no higher
Mott lobes. Also unlike the one-photon case, the SF phases above and below the
Mott are surprisingly different: Below the Mott, the SF is that of photon {\it
pairs} as opposed to above the Mott where it is SF of simple photons. The mean
field phase diagram of the RH model predicts a transition from a normal to a
superradiant phase but none is found with QMC.Comment: 14 pages, 14 figure
Comparison of energy consumption and costs of different HEVs and PHEVs in European and American context
This paper will analyse on the one hand the potential of Plug in Hybrid electric Vehicles to significantly reduce fuel consumption and displace it torward various primary energies thanks to the electricity sector. On the other hand the total cost of ownership of two different PHEV architectures will be compared to a conventional cehicle and a HEV without external charging
Exotic phases of interacting p-band bosons
We study a model of interacting bosons that occupy the first excited p-band
states of a two-dimensional optical lattice. In contrast to the much studied
single band Bose-Hubbard Hamiltonian, this more complex model allows for
non-trivial superfluid phases associated with condensation at non-zero momentum
and staggered order of the orbital angular momentum in addition to the
superfluid-Mott insulator transition. More specifically, we observe staggered
orbital angular momentum order in the Mott phase at commensurate filling and
superfluidity at all densities. We also observe a transition between the
staggered angular momentum superfluid phase and a striped superfluid, with an
alternation of the phase of the superfluid along one direction. The transition
between these two phases was observed in a recent experiment, which is then
qualitatively well described by our model.Comment: 8 pages, 12 figure
Raising the noise to improve performance in optimal processing
We formulate, in general terms, the classical theory of optimal detection and optimal estimation of signal in noise. In this framework, we exhibit specific examples of optimal detectors and optimal estimators endowed with a performance which can be improved by injecting more noise. From this proof of feasibility by examples, we suggest a general mechanism by which noise improvement of optimal processing, although seemingly paradoxical, may indeed occur. Beyond specific examples, this leads us to the formulation of open problems concerning the general characterization, including the conditions of formal feasibility and of practical realizability, of such situations of optimal processing improved by noise
The minimum description length principle for probability density estimation by regular histograms
The minimum description length principle is a general methodology for statistical modeling and inference that selects the best explanation for observed data as the one allowing the shortest description of them. Application of this principle to the important task of probability density estimation by histograms was previously proposed. We review this approach and provide additional illustrative examples and an application to real-world data, with a presentation emphasizing intuition and concrete arguments. We also consider alternative ways of measuring the description lengths, that can be found to be more suited in this context. We explicitly exhibit, analyze and compare, the complete forms of the description lengths with formulas involving the information entropy and redundancy of the data, and not given elsewhere. Histogram estimation as performed here naturally extends to multidimensional data, and offers for them flexible and optimal subquantization schemes. The framework can be very useful for modeling and reduction of complexity of observed data, based on a general principle from statistical information theory, and placed within a unifying informational perspective
Exact Study of the 1D Boson Hubbard Model with a Superlattice Potential
We use Quantum Monte Carlo simulations and exact diagonalization to explore
the phase diagram of the Bose-Hubbard model with an additional superlattice
potential. We first analyze the properties of superfluid and insulating phases
present in the hard-core limit where an exact analytic treatment is possible
via the Jordan-Wigner transformation. The extension to finite on-site
interaction is achieved by means of quantum Monte Carlo simulations. We
determine insulator/superfluid phase diagrams as functions of the on-site
repulsive interaction, superlattice potential strength, and filling, finding
that insulators with fractional occupation numbers, which are present in the
hard-core case, extend deep into the soft-core region. Furthermore, at integer
fillings, we find that the competition between the on-site repulsion and the
superlattice potential can produce a phase transition between a Mott insulator
and a charge density wave insulator, with an intermediate superfluid phase. Our
results are relevant to the behavior of ultracold atoms in optical
superlattices which are beginning to be studied experimentally.Comment: 13 pages, 23 figure
- …