6,040 research outputs found

    Nonlocal Quantum Gravity and the Size of the Universe

    Full text link
    Motivated by the conjecture that the cosmological constant problem is solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function Fk(V)F_k(V) of the Euclidean spacetime volume VV. For the V+VlnVV + V \ln V-invariant the renormalization group running enormously suppresses the value of the renormalized curvature which results from Planck-size parameters specified at the Planck scale. One obtains very large, i.e., almost flat universes without finetuning the cosmological constant. A critical infrared fixed point is found where gravity is scale invariant.Comment: 6 pages, 1 figure, contribution to the proceedings of the 36th International Symposium Ahrenshoop, Berlin, August 26-30, 200

    The Ward Identity from the Background Field Dependence of the Effective Action

    Full text link
    The dependence of the effective action for gauge theories on the background field obeys an exact identity. We argue that for Abelian theories the Ward identity follows from the more general background field identity. This observation is particularly relevant for the anomalous Ward identity valid for gauge theories with an effective infrared cutoff as used for flow equations.Comment: 8 page

    Wilsonian flows and background fields

    Full text link
    We study exact renormalisation group flows for background field dependent regularisations. It is shown that proper-time flows are approximations to exact background field flows for a specific class of regulators. We clarify the role of the implicit scale dependence introduced by the background field. Its impact on the flow is evaluated numerically for scalar theories at criticality for different approximations and regularisations. Implications for gauge theories are discussed.Comment: 12 pages, v2: references added. to appear in PL

    Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation

    Get PDF
    The exact renormalization group equation for pure quantum gravity is used to derive the non-perturbative \Fbeta-functions for the dimensionless Newton constant and cosmological constant on the theory space spanned by the Einstein-Hilbert truncation. The resulting coupled differential equations are evaluated for a sharp cutoff function. The features of these flow equations are compared to those found when using a smooth cutoff. The system of equations with sharp cutoff is then solved numerically, deriving the complete renormalization group flow of the Einstein-Hilbert truncation in d=4d=4. The resulting renormalization group trajectories are classified and their physical relevance is discussed. The non-trivial fixed point which, if present in the exact theory, might render Quantum Einstein Gravity nonperturbatively renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure

    WHIZARD 2.2 for Linear Colliders

    Full text link
    We review the current status of the WHIZARD event generator. We discuss, in particular, recent improvements and features that are relevant for simulating the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS13), Tokyo, Japan, 11-15 November 201

    Effective Average Action of Chern-Simons Field Theory

    Full text link
    The renormalization of the Chern-Simons parameter is investigated by using an exact and manifestly gauge invariant evolution equation for the scale-dependent effective average action.Comment: 14 pages, late

    Magnetic field dependence of hole levels in self-assembled InAs quantum dots

    Get PDF
    Recent magneto-transport experiments of holes in InGaAs quantum dots [D. Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, and J.C. Maan, Phys. Rev. Lett. 94, 026808 (2005)] are interpreted by employing a multi-band kp Hamiltonian, which considers the interaction between heavy hole and light hole subbands explicitely. No need of invoking an incomplete energy shell filling is required within this model. The crucial role we ascribe to the heavy hole-light hole interaction is further supported by one-band local-spin-density functional calculations, which show that Coulomb interactions do not induce any incomplete hole shell filling and therefore cannot account for the experimental magnetic field dispersion.Comment: 5 pages with 3 figures and one table. The paper has been submitted to Phys.Rev.

    Blue-fluorescence of NADPH as an indicator of marine primary production

    No full text
    Nicotinamide Adenine Dinucleotide Phosphate (NADPH) is the primary product of photosynthesisand can therefore serve as an indicator of biomass and photosynthetic activity. Pure NADPH whichis the reduced form of NADP shows an absorption maximum at 340 nm and a maximum of emissionat 460 nm. NADPH concentrations in terrestrial vegetation have already been studied since1957 in great detail with optical methods. However, its potential as a biomass parameter of oceanicphytoplankton which can be assessed in situ and remotely with fluorescence spectroscopy has notyet been investigated.In this paper, we report on laboratory investigations of the blue-fluorescence spectrum in algalsuspensions of Chlorella and Thalassiosira when excited with UV-A light. It is shown that cell densitiesof about 106 per litre as they are typically found under natural conditions are too low for precisedetection of NADPH fluorescence, while concentrated samples with 108-1010 cells per litre exhibitsignificant blue-fluorescence which can be related to NADPH. Inhibition of photosynthetic activityby addition of DCMU decreases the strength of blue-fluorescence remarkably. Since NADPHis an end product of photosynthesis, changes of PAR illumination levels should directly affect itsconcentration and hence the intensity of blue-fluorescence. However, no effect of illumination onblue-fluorescence could be observed in our study. Possible reasons of these observations are discussed,and perspectives for practical applications of the method used are proposed

    Density-functional theory investigation of oxygen adsorption at Pd(11N)(N=3,5,7) vicinal surfaces

    Full text link
    We present a density-functional theory study addressing the on-surface adsorption of oxygen at the Pd(11N) (N =3,5,7) vicinal surfaces, which exhibit (111) steps and (100) terraces of increasing width. We find the binding to be predominantly governed by the local coordination at the adsorption site. This leads to very similar bonding properties at the threefold step sites of all three vicinal surfaces, while the binding at the central fourfold hollow site in the four atomic row terrace of Pd(117) is already very little disturbed by the presence of the neighboring steps.Comment: 9 pages including 4 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm
    corecore