6,040 research outputs found
Nonlocal Quantum Gravity and the Size of the Universe
Motivated by the conjecture that the cosmological constant problem is solved
by strong quantum effects in the infrared we use the exact flow equation of
Quantum Einstein Gravity to determine the renormalization group behavior of a
class of nonlocal effective actions. They consist of the Einstein-Hilbert term
and a general nonlinear function of the Euclidean spacetime volume
. For the -invariant the renormalization group running
enormously suppresses the value of the renormalized curvature which results
from Planck-size parameters specified at the Planck scale. One obtains very
large, i.e., almost flat universes without finetuning the cosmological
constant. A critical infrared fixed point is found where gravity is scale
invariant.Comment: 6 pages, 1 figure, contribution to the proceedings of the 36th
International Symposium Ahrenshoop, Berlin, August 26-30, 200
The Ward Identity from the Background Field Dependence of the Effective Action
The dependence of the effective action for gauge theories on the background
field obeys an exact identity. We argue that for Abelian theories the Ward
identity follows from the more general background field identity. This
observation is particularly relevant for the anomalous Ward identity valid for
gauge theories with an effective infrared cutoff as used for flow equations.Comment: 8 page
Wilsonian flows and background fields
We study exact renormalisation group flows for background field dependent
regularisations. It is shown that proper-time flows are approximations to exact
background field flows for a specific class of regulators. We clarify the role
of the implicit scale dependence introduced by the background field. Its impact
on the flow is evaluated numerically for scalar theories at criticality for
different approximations and regularisations. Implications for gauge theories
are discussed.Comment: 12 pages, v2: references added. to appear in PL
Renormalization Group Flow of Quantum Gravity in the Einstein-Hilbert Truncation
The exact renormalization group equation for pure quantum gravity is used to
derive the non-perturbative \Fbeta-functions for the dimensionless Newton
constant and cosmological constant on the theory space spanned by the
Einstein-Hilbert truncation. The resulting coupled differential equations are
evaluated for a sharp cutoff function. The features of these flow equations are
compared to those found when using a smooth cutoff. The system of equations
with sharp cutoff is then solved numerically, deriving the complete
renormalization group flow of the Einstein-Hilbert truncation in . The
resulting renormalization group trajectories are classified and their physical
relevance is discussed. The non-trivial fixed point which, if present in the
exact theory, might render Quantum Einstein Gravity nonperturbatively
renormalizable is investigated for various spacetime dimensionalities.Comment: 58 pages, latex, 24 figure
WHIZARD 2.2 for Linear Colliders
We review the current status of the WHIZARD event generator. We discuss, in
particular, recent improvements and features that are relevant for simulating
the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear
Colliders (LCWS13), Tokyo, Japan, 11-15 November 201
Effective Average Action of Chern-Simons Field Theory
The renormalization of the Chern-Simons parameter is investigated by using an
exact and manifestly gauge invariant evolution equation for the scale-dependent
effective average action.Comment: 14 pages, late
Magnetic field dependence of hole levels in self-assembled InAs quantum dots
Recent magneto-transport experiments of holes in InGaAs quantum dots [D.
Reuter, P. Kailuweit, A.D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A.
Lorke, and J.C. Maan, Phys. Rev. Lett. 94, 026808 (2005)] are interpreted by
employing a multi-band kp Hamiltonian, which considers the interaction between
heavy hole and light hole subbands explicitely. No need of invoking an
incomplete energy shell filling is required within this model. The crucial role
we ascribe to the heavy hole-light hole interaction is further supported by
one-band local-spin-density functional calculations, which show that Coulomb
interactions do not induce any incomplete hole shell filling and therefore
cannot account for the experimental magnetic field dispersion.Comment: 5 pages with 3 figures and one table. The paper has been submitted to
Phys.Rev.
Blue-fluorescence of NADPH as an indicator of marine primary production
Nicotinamide Adenine Dinucleotide Phosphate (NADPH) is the primary product of photosynthesisand can therefore serve as an indicator of biomass and photosynthetic activity. Pure NADPH whichis the reduced form of NADP shows an absorption maximum at 340 nm and a maximum of emissionat 460 nm. NADPH concentrations in terrestrial vegetation have already been studied since1957 in great detail with optical methods. However, its potential as a biomass parameter of oceanicphytoplankton which can be assessed in situ and remotely with fluorescence spectroscopy has notyet been investigated.In this paper, we report on laboratory investigations of the blue-fluorescence spectrum in algalsuspensions of Chlorella and Thalassiosira when excited with UV-A light. It is shown that cell densitiesof about 106 per litre as they are typically found under natural conditions are too low for precisedetection of NADPH fluorescence, while concentrated samples with 108-1010 cells per litre exhibitsignificant blue-fluorescence which can be related to NADPH. Inhibition of photosynthetic activityby addition of DCMU decreases the strength of blue-fluorescence remarkably. Since NADPHis an end product of photosynthesis, changes of PAR illumination levels should directly affect itsconcentration and hence the intensity of blue-fluorescence. However, no effect of illumination onblue-fluorescence could be observed in our study. Possible reasons of these observations are discussed,and perspectives for practical applications of the method used are proposed
Density-functional theory investigation of oxygen adsorption at Pd(11N)(N=3,5,7) vicinal surfaces
We present a density-functional theory study addressing the on-surface
adsorption of oxygen at the Pd(11N) (N =3,5,7) vicinal surfaces, which exhibit
(111) steps and (100) terraces of increasing width. We find the binding to be
predominantly governed by the local coordination at the adsorption site. This
leads to very similar bonding properties at the threefold step sites of all
three vicinal surfaces, while the binding at the central fourfold hollow site
in the four atomic row terrace of Pd(117) is already very little disturbed by
the presence of the neighboring steps.Comment: 9 pages including 4 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
- …