156 research outputs found

    The uniqueness of the solution of the Schrodinger equation with discontinuous coefficients

    Full text link
    Consider the Schroeodinger equation: - Du(x) - l(x)u + s(x)u = 0, where D is the Laplacian, l(x) > 0 and s(x) is dominated by l(x). We shall extend the celebrated Kato's result on the asymptotic behavior of the solution to the case where l(x) has unbounded discontinuity. The result will be used to establish the limiting absorption principle for a class of reduced wave operators with discontinuous coefficients.Comment: 29 (twenty-nine) pages; no figures; to appear in Reviews of Mathematical Physic

    Quantum Averaging I: Poincar\'e--von Zeipel is Rayleigh--Schr\"odinger

    Full text link
    An exact analogue of the method of averaging in classical mechanics is constructed for self--adjoint operators. It is shown to be completely equivalent to the usual Rayleigh--Schr\"odinger perturbation theory but gives the sums over intermediate states in closed form expressions. The anharmonic oscillator and the Henon--Heiles system are treated as examples to illustrate the quantum averaging method.Comment: 12 pages, LaTeX, to appear in Journ. Phys.

    Weighted Sobolev spaces of radially symmetric functions

    Full text link
    We prove dilation invariant inequalities involving radial functions, poliharmonic operators and weights that are powers of the distance from the origin. Then we discuss the existence of extremals and in some cases we compute the best constants.Comment: 38 page

    Denjoy-Carleman differentiable perturbation of polynomials and unbounded operators

    Full text link
    Let tA(t)t\mapsto A(t) for tTt\in T be a CMC^M-mapping with values unbounded operators with compact resolvents and common domain of definition which are self-adjoint or normal. Here CMC^M stands for C^\om (real analytic), a quasianalytic or non-quasianalytic Denjoy-Carleman class, CC^\infty, or a H\"older continuity class C^{0,\al}. The parameter domain TT is either R\mathbb R or Rn\mathbb R^n or an infinite dimensional convenient vector space. We prove and review results on CMC^M-dependence on tt of the eigenvalues and eigenvectors of A(t)A(t).Comment: 8 page

    Adiabatic Approximation for weakly open systems

    Full text link
    We generalize the adiabatic approximation to the case of open quantum systems, in the joint limit of slow change and weak open system disturbances. We show that the approximation is ``physically reasonable'' as under wide conditions it leads to a completely positive evolution, if the original master equation can be written on a time-dependent Lindblad form. We demonstrate the approximation for a non-Abelian holonomic implementation of the Hadamard gate, disturbed by a decoherence process. We compare the resulting approximate evolution with numerical simulations of the exact equation.Comment: New material added, references added and updated, journal reference adde

    Connection Conditions and the Spectral Family under Singular Potentials

    Get PDF
    To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wave functions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well-defined even if the wave functions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=e2/xV(x) = - e^2 / | x | and the harmonic oscillator with square inverse potential V(x)=(mω2/2)x2+g/x2V(x) = (m \omega^2 / 2) x^2 + g/x^2, and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potentials V(x)=V(x)V(-x) = V(x), the spectrum is determined solely by the eigenvalues of the characteristic matrix UU(2)U \in U(2).Comment: TeX, 18 page

    Spectral asymmetry of the massless Dirac operator on a 3-torus

    Get PDF
    Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant

    Large deviations and Chernoff bound for certain correlated states on a spin chain

    Full text link
    In this paper we extend the results of Lenci and Rey-Bellet on the large deviation upper bound of the distribution measures of local Hamiltonians with respect to a Gibbs state, in the setting of translation-invariant finite-range interactions. We show that a certain factorization property of the reference state is sufficient for a large deviation upper bound to hold and that this factorization property is satisfied by Gibbs states of the above kind as well as finitely correlated states. As an application of the methods the Chernoff bound for correlated states with factorization property is studied. In the specific case of the distributions of the ergodic averages of a one-site observable with respect to an ergodic finitely correlated state the spectral theory of positive maps is applied to prove the full large deviation principle.Comment: some typos corrected, short proof of Lemma A.2 adde

    Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example

    Get PDF
    We study a perturbed Floquet Hamiltonian K+βVK+\beta V depending on a coupling constant β\beta. The spectrum σ(K)\sigma(K) is assumed to be pure point and dense. We pick up an eigen-value, namely 0σ(K)0\in\sigma(K), and show the existence of a function λ(β)\lambda(\beta) defined on IRI\subset\R such that λ(β)σ(K+βV)\lambda(\beta) \in \sigma(K+\beta V) for all βI\beta\in I, 0 is a point of density for the set II, and the Rayleigh-Schr\"odinger perturbation series represents an asymptotic series for the function λ(β)\lambda(\beta). All ideas are developed and demonstrated when treating an explicit example but some of them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51

    Analyticity and criticality results for the eigenvalues of the biharmonic operator

    Full text link
    We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.Comment: To appear on the proceedings of the conference "Geometric Properties for Parabolic and Elliptic PDE's - 4th Italian-Japanese Workshop" held in Palinuro (Italy), May 25-29, 201
    corecore