1,694 research outputs found

    Diphtheritic paralysis and antitoxine

    Get PDF
    n/

    Global/local stress analysis of composite panels

    Get PDF
    A method for performing a global/local stress analysis is described, and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener

    The Proper Motion of PSR J0205+6449 in 3C 58

    Full text link
    We report on sensitive phase-referenced and gated 1.4-GHz VLBI radio observations of the pulsar PSR J0205+6449 in the young pulsar-wind nebula 3C 58, made in 2007 and 2010. We employed a novel technique where the ~105-m Green Bank telescope is used simultaneously to obtain single-dish data used to determine the pulsar's period as well as to obtain the VLBI data, allowing the VLBI correlation to be gated synchronously with the pulse to increase the signal-to-noise. The high timing noise of this young pulsar precludes the determination of the proper motion from the pulsar timing. We derive the position of the pulsar accurate at the milliarcsecond level, which is consistent with a re-determined position from the Chandra X-ray observations. We reject the original tentative optical identification of the pulsar by Shearer and Neustroev (2008), but rather identify a different optical counterpart on their images, with R-band magnitude ~24. We also determine an accurate proper motion for PSR J0205+6449 of (2.3 +- 0.3) mas/yr, corresponding to a projected velocity of only (35 +- 6) km/s for a distance of 3.2 kpc, at p.a. -38 deg. This projected velocity is quite low compared to the velocity dispersion of known pulsars of ~200 km/s. Our measured proper motion does not suggest any particular kinematic age for the pulsar.Comment: 10 pages, 7 figures; accepted for publication in MNRA

    VLBI for Gravity Probe B. VII. The Evolution of the Radio Structure of IM Pegasi

    Full text link
    We present measurements of the total radio flux density as well as very-long-baseline interferometry (VLBI) images of the star, IM Pegasi, which was used as the guide star for the NASA/Stanford relativity mission Gravity Probe B. We obtained flux densities and images from 35 sessions of observations at 8.4 GHz (wavelength = 3.6 cm) between 1997 January and 2005 July. The observations were accurately phase-referenced to several extragalactic reference sources, and we present the images in a star-centered frame, aligned by the position of the star as derived from our fits to its orbital motion, parallax, and proper motion. Both the flux density and the morphology of IM Peg are variable. For most sessions, the emission region has a single-peaked structure, but 25% of the time, we observed a two-peaked (and on one occasion perhaps a three-peaked) structure. On average, the emission region is elongated by 1.4 +- 0.4 mas (FWHM), with the average direction of elongation being close to that of the sky projection of the orbit normal. The average length of the emission region is approximately equal to the diameter of the primary star. No significant correlation with the orbital phase is found for either the flux density or the direction of elongation, and no preference for any particular longitude on the star is shown by the emission region.Comment: Accepted for publication in the Astrophysical Journal Supplement Serie

    Out of the frying pan: a young pulsar with a long radio trail emerging from SNR G315.9-0.0

    Full text link
    The faint radio supernova remnant SNR G315.9-0.0 is notable for a long and thin trail that extends outward perpendicular from the edge of its approximately circular shell. In a search with the Parkes telescope we have found a young and energetic pulsar that is located at the tip of this collimated linear structure. PSR J1437-5959 has period P = 61 ms, characteristic age tau_c = 114 kyr, and spin-down luminosity dE/dt = 1.4e36 erg/s. It is very faint, with a flux density at 1.4 GHz of about 75 uJy. From its dispersion measure of 549 pc/cc, we infer d ~ 8 kpc. At this distance and for an age comparable to tau_c, the implied pulsar velocity in the plane of the sky is V_t = 300 km/s for a birth at the center of the SNR, although it is possible that the SNR/pulsar system is younger than tau_c and that V_t > 300 km/s. The highly collimated linear feature is evidently the pulsar wind trail left from the supersonic passage of PSR J1437-5959 through the interstellar medium surrounding SNR G315.9-0.0.Comment: accepted for publication in ApJ Letter

    Computational methods for global/local analysis

    Get PDF
    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods

    1E 1547.0-5408: a radio-emitting magnetar with a rotation period of 2 seconds

    Full text link
    The variable X-ray source 1E 1547.0-5408 was identified by Gelfand & Gaensler (2007) as a likely magnetar in G327.24-0.13, an apparent supernova remnant. No X-ray pulsations have been detected from it. Using the Parkes radio telescope, we discovered pulsations with period P = 2.069 s. Using the Australia Telescope Compact Array, we localized these to 1E 1547.0-5408. We measure dP/dt = (2.318+-0.005)e-11, which for a magnetic dipole rotating in vacuo gives a surface field strength of 2.2e14 G, a characteristic age of 1.4 kyr, and a spin-down luminosity of 1.0e35 ergs/s. Together with its X-ray characteristics, these rotational parameters of 1E 1547.0-5408 prove that it is a magnetar, only the second known to emit radio waves. The distance is ~9 kpc, derived from the dispersion measure of 830 pc/cc. The pulse profile at a frequency of 1.4 GHz is extremely broad and asymmetric due to multipath propagation in the ISM, as a result of which only approximately 75% of the total flux at 1.4 GHz is pulsed. At higher frequencies the profile is more symmetric and has FWHM = 0.12P. Unlike in normal radio pulsars, but in common with the other known radio-emitting magnetar, XTE J1810-197, the spectrum over 1.4-6.6 GHz is flat or rising, and we observe large, sudden changes in the pulse shape. In a contemporaneous Swift X-ray observation, 1E 1547.0-5408 was detected with record high flux, f_X(1-8 keV) ~ 5e-12 ergs/cm^2/s, 16 times the historic minimum. The pulsar was undetected in archival radio observations from 1998, implying a flux < 0.2 times the present level. Together with the transient behavior of XTE J1810-197, these results suggest that radio emission is triggered by X-ray outbursts of usually quiescent magnetars.Comment: Accepted for publication in ApJ Letter

    Discovery of the energetic pulsar J1747-2809 in the supernova remnant G0.9+0.1

    Get PDF
    The supernova remnant G0.9+0.1 has long been inferred to contain a central energetic pulsar. In observations with the NRAO Green Bank Telescope at 2 GHz, we have detected radio pulsations from PSR J1747-2809. The pulsar has a rotation period of 52 ms, and a spin-down luminosity of 4.3e37 erg/s, the second largest among known Galactic pulsars. With a dispersion measure of 1133 pc/cc, PSR J1747-2809 is distant, at ~13 kpc according to the NE2001 electron density model, although it could be located as close as the Galactic center. The pulse profile is greatly scatter-broadened at a frequency of 2 GHz, so that it is effectively undetectable at 1.4 GHz, and is very faint, with period-averaged flux density of 40 uJy at 2 GHz.Comment: minor changes from v1 - matches published versio
    • …
    corecore