41 research outputs found

    Geochemical constraints on the geodynamic setting of Alborz-Azerbaijan Cenozoic magmatism

    Get PDF
    The Alborz Mountains in northern Iran form part of the Tethyan orogenic belt and surround the South Caspian Basin. The geology of the western Alborz Mountains is dominated by Eocene mafic to intermediate high-K calc-alkaline-alkaline shoshonitic and minor Oligo-Miocene magmatic rocks, displaying arc geochemical characteristics (e.g., negative Nb, Ta, Ti anomalies). Cenozoic magmatism across this region in western Asia has been explained by a diversity of contrasting geodynamic models involving (multiple slab) subduction and slab-breakoff. The aim of this study is to better constrain the geodynamic setting of magmatism during regional convergence through the investigation of the relatively unstudied Alborz-Azerbaijan magmatic belt. Incompatible trace element geochemistry of Eocene lavas from this belt is distinctive and indicates that they were generated by relatively low-degrees of partial melting of the subcontinental lithospheric mantle with a contribution of asthenosphere melts. Miocene lavas from the Alborz and northern Urmia–Dokhtar magmatic arc (UDMA) share a common arc geochemical signature. Zircon εHf(t) values of the Miocene magmatic rocks from the Alborz and northern UDMA range from −0.4 to 11.7, suggesting incorporation of older continental crust mixed with a more juvenile component. New thermochronological data (fission track and (U-Th)/He on apatite) from the late Eocene plutonic bodies in the Tarom area track exhumational cooling at moderate rates following rapid post-emplacement magmatic cooling at ca. 40 Ma. The geochemical data in conjunction with geological and published geophysical results imply a bending or disruption in the subducting slab under the Tarom area, associated with slab roll-back during the Eocene. This process led to the arc-front displacement and a greater contribution of deep enriched mantle in the Alborz magmas compared to those from the high-flux magmatic event along the Alborz and Urmia–Dokhtar magmatic arc (UDMA), triggered by asthenospheric upwelling and mixing with melts derived from earlier metasomatized subcontinental lithospheric mantle

    The Persistent Circulation of Enterovirus 71 in People's Republic of China: Causing Emerging Nationwide Epidemics Since 2008

    Get PDF
    Emerging epidemics of hand-foot-and-mouth disease (HFMD) associated with enterovirus 71 (EV71) has become a serious concern in mainland China. It caused 126 and 353 fatalities in 2008 and 2009, respectively. The epidemiologic and pathogenic data of the outbreak collected from national laboratory network and notifiable disease surveillance system. To understand the virological evolution of this emerging outbreak, 326 VP1 gene sequences of EV71 detected in China from 1987 to 2009 were collected for genetic analyses. Evidence from both traditional and molecular epidemiology confirmed that the recent HFMD outbreak was an emerging one caused by EV71 of subgenotype C4. This emerging HFMD outbreak is associated with EV71 of subgenotype C4, circulating persistently in mainland China since 1998, but not attributed to the importation of new genotype. Originating from 1992, subgenotype C4 has been the predominant genotype since 1998 in mainland China, with an evolutionary rate of 4.6∼4.8×10−3 nucleotide substitutions/site/year. The phylogenetic analysis revealed that the majority of the virus during this epidemic was the most recent descendant of subgenotype C4 (clade C4a). It suggests that the evolution might be one of the potential reasons for this native virus to cause the emerging outbreak in China. However, strong negative selective pressure on VP1 protein of EV71 suggested that immune escape might not be the evolving strategy of EV71, predicting a light future for vaccine development. Nonetheless, long-term antigenic and genetic surveillance is still necessary for further understanding

    Postnatal development of metabolic rate during normoxia and acute hypoxia in rats: implication for a sensitive period

    No full text
    Previously, we reported that the hypoxic ventilatory response (HVR) in rats was weakest at postnatal day (P) P13, concomitant with neurochemical changes in respiratory nuclei. A major determinant of minute ventilation (V̇e) is reportedly the metabolic rate [O2 consumption (V̇o2) and CO2 production (V̇co2)]. The present study aimed at testing our hypothesis that daily metabolic rates changed in parallel with ventilation during development and that a weak HVR at P13 was attributable mainly to an inadequate metabolic rate in hypoxia. Ventilation and metabolic rates were monitored daily in P0–P21 rats. We found that 1) ventilation and metabolic rates were not always correlated, and V̇e/V̇o2 and V̇e/V̇co2 ratios were not constant during development; 2) metabolic rate and V̇e/V̇o2 and V̇e/V̇co2 ratios at P0–P1 were significantly different from the remaining first postnatal week in normoxia and hypoxia; 3) at P13, metabolic rates and V̇e/V̇o2 and V̇e/V̇co2 ratios abruptly increased in normoxia and were compromised in acute hypoxia, unlike more stable trends during the remaining second and third postnatal weeks; and 4) the respiratory quotient (V̇co2/V̇o2) was quite stable in normoxia and fluctuated slightly in hypoxia from P0 to P21. Thus our data revealed heretofore unsuspected metabolic adjustments at P0–P1 and P13. At P0–P1, ventilation and metabolic rates were uncorrelated, whereas at P13, they were closely correlated under normoxia and hypoxia. The findings further strengthened the existence of a critical period of respiratory development around P13, when multiple physiological and neurochemical adjustments occur simultaneously

    Influence of Mushroom Polysaccharide, Nano-Copper, Copper Loaded Chitosan, and Lysozyme on Intestinal Barrier and Immunity of LPS-mediated Yellow-Feathered Chickens

    No full text
    This study investigated the influence of dietary supplementation with some antibiotic alternatives on growth performance, intestinal barrier, and immunity of lipopolysaccharide (LPS) challenged chicks. Wenshi females, aged 4 days, were allocated randomly into eight groups, each with six replicates of 20 birds (n = 120/treatment), which received a basal diet supplemented with 0 (control), 0 (LPS), 200 mg/kg aureomycin, 50 mg/kg mushroom polysaccharide, 100 mg/kg mushroom polysaccharide, 500 mg/kg nano-copper, 300 mg/kg copper loaded chitosan, and 500 mg/kg lysozyme for 21 days. On day 18 and 20, the control birds were injected with 0.5 mL saline solution, the other treatments were injected with 0.5 mL saline containing 500 µg LPS/kg body weight (BW). The results indicated that LPS treatment reduced the BW, average daily gain (ADG), and daily feed intake (ADFI) than the controls (p < 0.05), and the antibiotic and the tested alternatives could not retrieve the normal BW, ADG, and ADFI. The tested additives reduced several negative effects of LPS; they reduced diamine oxidase activity and inflammatory mediators in plasma, jejunal mucosa, spleen and thymus, increased content of immunoglobulin in plasma and jejunal mucosa, and decreased gene expression of inducible nitric oxide synthase and Cyclooxygenase 2 in jejunal mucosa

    3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media

    No full text
    Although significant progresses have been achieved recently in developing catalysts for electrochemical oxygen evolution in alkaline electrolytes, high performance catalysts toward oxygen evolution in acidic media have not been realized in spite of the technical importance for the development of promising energy transformation technologies including electrocatalytic water splitting, integrated (photo)electrochemistry cells, rechargeable metal-air batteries, and so on. Here, we synthesized a three-dimensional nanoporous Ir70Ni30-xCox alloy microwires as oxygen evolution reaction electrocatalyst using a dealloying strategy. The three dimensional binder-free np-Ir70Ni15Co15 catalyst in 0.1 M HClO4 shows a low overpotential (220 mV@ η = 10 mA cm−2), low Tafel slope (44.1 mV dec−1) and excellent corrosion resistance, significantly outperforming commercial IrO2 catalysts. The excellent performance is attributed to the nanoporous structure and the alloying effect, which promote the permeation of electrolyte, accelerate the transportation of electrons. More importantly, the high valence Ir oxide species with low-coordination structure in np-Ir70Ni15Co15 alloy are identified for the real catalytic sites of OER process by the XAS results acquired on synchrotron radiation. This work not only provides fundamental understandings of the correlation between surface activity and stability for OER catalysts, but also paves a new way to advanced electrocatalysts working in acidic media
    corecore