16 research outputs found

    Thirty Years Experience with all Ceramic Bearings

    No full text

    Pathogenic role of basic calcium phosphate crystals in destructive arthropathies.

    Get PDF
    BACKGROUND: basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. METHODOLOGY PRINCIPAL FINDINGS: synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. CONCLUSIONS SIGNIFICANCE: intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct pathogenic role in OA. The effects are independent of IL-1 and NLRP3 inflammasome

    Retrieval analysis of alumina ceramic-on-ceramic bearing couples

    No full text
    BACKGROUND AND PURPOSE: Ceramic-on-ceramic (CoC) bearings have been in use in total hip replacement (THR) for more than 40 years, with excellent long-term survivorship. Although there have been several simulator studies describing the performance of these joints, there have only been a few retrieval analyses. The aim of this study was to investigate the wear patterns, the surface properties, and friction and lubrication regimes of explanted first-generation alumina bearings. MATERIALS AND METHODS: We studied 9 explanted CoC bearings from Autophor THRs that were revised for aseptic loosening after a mean of 16 (range 7–19) years. The 3D surface roughness profiles of the femoral heads and acetabular cups (Srms, Sa, and Ssk) were measured to determine the microscopic wear. The bearings were imaged using an atomic-force microscope in contact mode, to produce a topographical map of the surfaces of the femoral heads. Friction tests were performed on the bearing couples to determine the lubrication regime under which they were operating during the walking cycle. The diametral clearances were also measured. RESULTS: 3 femoral heads showed stripe wear and the remaining 6 bearings showed minimal wear. The femoral heads with stripe wear had significantly higher surface roughness than the minimally worn bearings (0.645 vs. 0.289, p = 0.04). High diametral clearances, higher than expected friction, and mixed/boundary lubrication regimes prevailed in these retrieved bearings. INTERPRETATION: Despite the less than ideal tribological factors, these first-generation CoC bearings still showed minimal wear in the long term compared to previous retrieval analyses

    Wear Mechanisms in Ceramic Hip Implants

    Get PDF
    The wear in hip implants is one of the main causes for premature hip replacements. The wear affects the potential life of the prosthesis and subsequent removals of in-vivo implants. Therefore, the objective of this article is to review various joints that show lower wear rates and consequently higher life. Ceramics are used in hip implants and have been found to produce lower wear rates. This article discusses the advantages and disadvantages of ceramics compared to other implant materials. Different types of ceramics that are being used are reviewed in terms of the wear characteristics, debris released, and their size together with other biological factors. In general, the wear rates in ceramics were lower than that of metal-on-metal and metalon- polyethylene combinations
    corecore