279 research outputs found

    On Provably Safe and Live Multirobot Coordination With Online Goal Posting

    Get PDF
    A standing challenge in multirobot systems is to realize safe and efficient motion planning and coordination methods that are capable of accounting for uncertainties and contingencies. The challenge is rendered harder by the fact that robots may be heterogeneous and that their plans may be posted asynchronously. Most existing approaches require constraints on the infrastructure or unrealistic assumptions on robot models. In this article, we propose a centralized, loosely-coupled supervisory controller that overcomes these limitations. The approach responds to newly posed constraints and uncertainties during trajectory execution, ensuring at all times that planned robot trajectories remain kinodynamically feasible, that the fleet is in a safe state, and that there are no deadlocks or livelocks. This is achieved without the need for hand-coded rules, fixed robot priorities, or environment modification. We formally state all relevant properties of robot behavior in the most general terms possible, without assuming particular robot models or environments, and provide both formal and empirical proof that the proposed fleet control algorithms guarantee safety and liveness

    An Advanced Colour Calibration Method for Fish Freshness Assessment: a Comparison Between Standard and Passive Refrigeration Modalities

    Get PDF
    Freshness represents a pivotal aspect in fish product for both security and quality. Its evaluation still represents the key factor driving the consumer' choices. Fish appearance is affected by many different factors that demand the contribution of different disciplines to be understood: from the physical and optical properties to the slaughtering and post-slaughtering conditions. An innovative preservation system is represented by the Passive Refrigeration PRS (TM) developed for the preservation and transport of perishable food products. Scientific methods for product freshness evaluation may be conveniently divided into two categories: sensorial and instrumental. In this study, an instrumental method of colour calibration and discrimination is proposed at pilot scale for automatic evaluation of gilthead seabream (Sparus aurata) freshness. We propose a non-destructive method based on the colorimetric imaging of the whole external body of seabreams to evaluate through multivariate partial least squares which approach the differences in the freshness preservation under four refrigeration modalities. The matrix of the independent variables is represented by RGB values for each pixel belonging to an extracted region of interest (129,633 values). The dependent variable is composed by two dummy variable corresponding to fresh (T-0) or non-fresh (T-2) individuals. T-1 individuals were used as external test. The results quantified significant colorimetric differences between fresh and non-fresh fish. All fish used to create the model (T-0 and T-2) were correctly classified as fresh or non-fresh, while external test individuals (T-1) were all classified as fresh. The proposed imaging method merges different image analysis techniques: (a) colorimetric calibration, (b) morphometric superimposition and (c) partial least square discriminant analysis modelling. This innovative and non-destructive approach allows the automatic assessment of fish freshness

    Intermodal vs. conventional logistic of refrigerated products: a case study from Southern to Northern Europe

    Get PDF
    Most of perishable goods, such as fruit and vegetables, are transported in Europe by truck and clogging up the main road networks. The increasing demand for freight transport and the environmental concerns all indicate the necessity to embrace new means of transport such as the intermodal one. The intermodal transport uses swap bodies and reefer containers that allow for the use of interchangeable truck, train, and ship to reduce direct and external costs. Nowadays, the utilization of exclusive truck transport is due to its considerable flexibility and often to the disregard of the motor vehicle regulations during transport. This research aims to analyze some essential readjustments that must be made in order to increase efficiency in the logistic of refrigerated fruit and vegetables. To do so, some hypotheses were analyzed and formulated in which the strategic use of the truck was recognized and inserted as part of an intermodal transport system. The transport options of a combined use of ships and trains in association with trucks were evaluated with respect to the current prevalent solution of exclusive use of trucks. Such options were evaluated by comparing them under different itineraries hypotheses (from south Italy, Sicily to Germany, Munich) on the base of costs and transit-times parameters. This was done mainly throughout interviewing sector-relevant transport operators. The results of the comparison between the intermodal and conventional transport was shown to be economically more convenient with respect to both legal and illegal transport by exclusive truck transport, presenting lower per unit costs (swap body or semi-trailer, containing the same amount of goods). Moreover, the intermodal solution scores equal or higher transit times in the comparison with the “transit by regulation compliance” and much higher transit times if compared with the “illegal” option. Therefore, the regulation compliance aspect would partially promote the use of intermodal options in a future fair competition. In addition, besides reducing the direct costs, it produces several other positive effects in terms of external costs to the society such as to reduce road crashes, noises, atmospheric emissions and greenhouse effect. A more efficient system should plan an integrated system of arrival and departure organizing together the schedules of ships and trains dedicated to perishable goods and increasing the transported amounts. Furthermore, another idea is to stipulate commercial agreements with train operators, applying a reduction on the base price, by ensuring the delivery of a block train for an arranged period.   Keywords: Intermodal, freight logisticcentre, truck haulage, rail hub; terminal

    Priority-Based Distributed Coordination for Heterogeneous Multi-Robot Systems with Realistic Assumptions

    Get PDF
    A standing challenge in current intralogistics is to reliably, effectively, yet safely coordinate large-scale, heterogeneous multi-robot fleets without posing constraints on the infrastructure or unrealistic assumptions on robots. A centralized approach, proposed by some of the authors in prior work, allows to overcome these limitations with medium-scale fleets (i.e., tens of robots). With the aim of scaling to hundreds of robots, in this article we explore a decentralized variant of the same approach. The proposed framework maintains the key features of the original approach, namely, ensuring safety despite uncertainties on robot motions, and generality with respect to robot platforms, motion planners and controllers. We include considerations on liveness and report solutions to prevent or recover from deadlocks in specific situations. We validate the approach empirically in simulation with large, heterogeneous multi-robot fleets (with up to 100 robots) operating in both benchmark and realistic environments

    Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites

    Get PDF
    Many experiments have searched for supersymmetric WIMP dark matter, with null results. This may suggest to look for more exotic possibilities, for example compact ultra-dense quark nuggets, widely discussed in literature with several different names. Nuclearites are an example of candidate compact objects with atomic size cross section. After a short discussion on nuclearites, the result of a nuclearite search with the gravitational wave bar detectors Nautilus and Explorer is reported. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−510^{-5} g, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates. Particles with gravitational only interactions (newtorites) are another example. In this case the sensitivity is quite poor and a short discussion is reported on possible improvements.Comment: published on Astroparticle Physics Sept 25th 2016 replaced fig 1

    Towards the design of robotic drivers for full-scale self-driving racing cars

    Get PDF
    Autonomous vehicles are undergoing a rapid development thanks to advances in perception, planning and control methods and technologies achieved in the last two decades. Moreover, the lowering costs of sensors and computing platforms are attracting industrial entities, empowering the integration and development of innovative solutions for civilian use. Still, the development of autonomous racing cars has been confined mainly to laboratory studies and small to middle scale vehicles. This paper tackles the development of a planning and control framework for an electric full scale autonomous racing car, which is an absolute novelty in the literature, upon which we report our preliminary experiments and perspectives on future work. Our system leverages real time Nonlinear Model Predictive Control to track a pre-planned racing line. We describe the whole control system architecture including the mapping and localization methods employed

    Quark nuggets search using 2350 Kg gravitational waves aluminum bar detectors

    Get PDF
    The gravitational wave resonant detectors can be used as detectors of quark nuggets, like nuclearites (nuclear matter with a strange quark). This search has been carried out using data from two 2350 Kg, 2 K cooled, aluminum bar detectors: NAUTILUS, located in Frascati (Italy), and EXPLORER, that was located in CERN Geneva (CH). Both antennas are equipped with cosmic ray shower detectors: signals in the bar due to showers are continuously detected and used to characterize the antenna performances. The bar excitation mechanism is based on the so called thermo-acoustic effect, studied on dedicated experiments that use particle beams. This mechanism predicts that vibrations of bars are induced by the heat deposited in the bar from the particle. The geometrical acceptance of the bar detectors is 19.5 m2\rm m^2 sr, that is smaller than that of other detectors used for similar searches. However, the detection mechanism is completely different and is more straightforward than in other detectors. We will show the results of ten years of data from NAUTILUS (2003-2012) and 7 years from EXPLORER (2003-2009). The experimental limits we obtain are of interest because, for nuclearites of mass less than 10−410^{-4} grams, we find a flux smaller than that one predicted considering nuclearites as dark matter candidates.Comment: presented to the 33rd International Cosmic Ray Conference Rio de Janeiro 201

    Increasing the bandwidth of resonant gravitational antennas: The case of Explorer

    Full text link
    Resonant gravitational wave detectors with an observation bandwidth of tens of hertz are a reality: the antenna Explorer, operated at CERN by the ROG collaboration, has been upgraded with a new read-out. In this new configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz about its frequency of operation of 919 Hz the spectral sensitivity is better than 10^{-20} /sqrt(Hz) . We describe the detector and its sensitivity and discuss the foreseable upgrades to even larger bandwidths.Comment: 4 pages- 4 figures Acceted for publication on Physical Review Letter

    Search for Periodic Gravitational Wave Sources with the Explorer Detector

    Get PDF
    We have developped a procedure for the search of periodic signals in the data of gravitational wave detectors. We report here the analysis of one year of data from the resonant detector Explorer, searching for pulsars located in the Galactic Center (GC). No signals with amplitude greater than hˉ=2.9 10−24\bar{h}= 2.9~10^{-24}, in the range 921.32-921.38 Hz, were observed using data collected over a time period of 95.7 days, for a source located at α=17.70±0.01\alpha=17.70 \pm 0.01 hours and ÎŽ=−29.00±0.05\delta=-29.00 \pm 0.05 degrees. Our procedure can be extended for any assumed position in the sky and for a more general all-sky search, even with a frequency correction at the source due to the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and related material also at http://grwav3.roma1.infn.it

    Analysis of 3 years of data from the gravitational wave detectors EXPLORER and NAUTILUS

    Full text link
    We performed a search for short gravitational wave bursts using about 3 years of data of the resonant bar detectors Nautilus and Explorer. Two types of analysis were performed: a search for coincidences with a low background of accidentals (0.1 over the entire period), and the calculation of upper limits on the rate of gravitational wave bursts. Here we give a detailed account of the methodology and we report the results: a null search for coincident events and an upper limit that improves over all previous limits from resonant antennas, and is competitive, in the range h_rss ~1E-19, with limits from interferometric detectors. Some new methodological features are introduced that have proven successful in the upper limits evaluation.Comment: 12 pages, 12 figure
    • 

    corecore