296 research outputs found

    Pentraxin 3 in cardiovascular disease

    Get PDF
    The long pentraxin PTX3 is a member of the pentraxin family produced locally by stromal and myeloid cells in response to proinflammatory signals and microbial moieties. The prototype of the pentraxin family is C reactive protein (CRP), a widely-used biomarker in human pathologies with an inflammatory or infectious origin. Data so far describe PTX3 as a multifunctional protein acting as a functional ancestor of antibodies and playing a regulatory role in inflammation. Cardiovascular disease (CVD) is a leading cause of mortality worldwide, and inflammation is crucial in promoting it. Data from animal models indicate that PTX3 can have cardioprotective and atheroprotective roles regulating inflammation. PTX3 has been investigated in several clinical settings as possible biomarker of CVD. Data collected so far indicate that PTX3 plasma levels rise rapidly in acute myocardial infarction, heart failure and cardiac arrest, reflecting the extent of tissue damage and predicting the risk of mortality

    Zebrafish models of the immune response: taking it on the ChIn

    Get PDF
    The zebrafish is proving to be an extremely versatile new experimental model for unraveling the mysteries of innate immunity and has considerable promise as a system for the identification of novel modulators of this crucial biological process. A rate-limiting factor, however, is the mechanical stimulus required to induce the inflammatory response. A new chemically induced inflammation assay ('ChIn' assay) published in BMC Biology obviates this requirement and seems set to accelerate progress in the field

    High- and low-affinity PEGylated hemoglobin-based oxygen carriers: differential oxidative stress in a Guinea pig transfusion model

    Get PDF
    Hemoglobin (Hb)-based oxygen carriers (HBOCs) are an investigational replacement for blood transfusions and are known to cause oxidative damage to tissues. To investigate the correlation between their oxygen binding properties and these detrimental effects, we investigated two PEGylated HBOCs endowed with different oxygen binding properties - but otherwise chemically identical - in a Guinea pig transfusion model. Plasma samples were analyzed for biochemical markers of inflammation, tissue damage and organ dysfunction; proteins and lipids of heart and kidney extracts were analyzed for markers of oxidative damage. Overall, both HBOCs produced higher oxidative stress in comparison to an auto-transfusion control group. Particularly, tissue 4-hydroxynonenal-adducts, tissue malondialdehyde adducts and plasma 8-oxo-2'-deoxyguanosine exhibited significantly higher levels in comparison with the control group. For malondialdehyde adducts, a higher level in the renal tissue was observed for animals treated with PEG-Hboxy, hinting at a correlation between the HBOCs oxygen binding properties and the oxidative stress they produce. Moreover, we found that the high-affinity HBOC produced greater tissue oxygenation in comparison with the low affinity one, possibly correlating with the higher oxidative stress it induced

    Lower grade gliomas: relationships between metabolic and structural imaging with grading and molecular factors

    Get PDF
    Background: Positron emission tomography (PET) is a valuable tool for the characterization of brain tumors in vivo. However, few studies have investigated the correlation between carbon-11-methionine (11C-METH) PET metrics and the clinical, radiological, histological, and molecular features of patients affected by lower grade gliomas (LGGs). The present observational study evaluated the relationships between 11C-METH PET metrics and structural magnetic resonance imaging (MRI) findings with the histomolecular biomarkers in patients with LGGs who were candidates for surgery. Methods: We enrolled 96 patients with pathologically proven LGG (51 men, 45 women; age 44.1 \ub1 13.7 years; 45 with grade II, 51 with grade III), who had been referred from March 2012 to January 2015 for tumor resection and had undergone preoperative 11C-METH PET. The semiquantitative metrics for 11C-METH PET included maximum standardized uptake value (SUVmax), SUV ratio to normal brain, and metabolic tumor burden (MTB). The PET semiquantitative metrics were analyzed and compared with the MRI features, histological diagnosis, isocitrate dehydrogenase-1/2 status, and 1p/19q codeletion. Results: Histological grade was associated with SUVmax (P = 0.002), SUV ratio (P = 0.011), and MTB (P = 0.001), with grade III lesions showing higher values. Among the nonenhancing lesions on MRI, SUVmax (P = 0.001), SUV ratio (P = 0.003) and MTB (P < 0.001) were significantly different statistically for grade II versus grade III. The MRI lesion volume correlated poorly with MTB (r 2 = 0.13). The SUVmax and SUV ratio were greater (P < 0.05) in isocitrate dehydrogenase-1/2 wild-type lesions, and the SUV ratio was associated with the presence of the 1p19q codeletion. Conclusions: The 11C-METH PET metrics correlated significantly with histological grade and the molecular profile. Semiquantitative PET metrics can improve the preoperative evaluation of LGGs and thus support clinical decision-making

    Age and Diet Affect Gene Expression Profile in Canine Skeletal Muscle

    Get PDF
    We evaluated gene transcription in canine skeletal muscle (biceps femoris) using microarray analysis to identify effects of age and diet on gene expression. Twelve female beagles were used (six 1-year olds and six 12-year olds) and they were fed one of two experimental diets for 12 months. One diet contained primarily plant-based protein sources (PPB), whereas the second diet contained primarily animal-based protein sources (APB). Affymetrix GeneChip Canine Genome Arrays were used to hybridize extracted RNA. Age had the greatest effect on gene transcription (262 differentially expressed genes), whereas the effect of diet was relatively small (22 differentially expressed genes). Effects of age (regardless of diet) were most notable on genes related to metabolism, cell cycle and cell development, and transcription function. All these genes were predominantly down-regulated in geriatric dogs. Age-affected genes that were differentially expressed on only one of two diets were primarily noted in the PPB diet group (144/165 genes). Again, genes related to cell cycle (22/35) and metabolism (15/19) had predominantly decreased transcription in geriatric dogs, but 6/8 genes related to muscle development had increased expression. Effects of diet on muscle gene expression were mostly noted in geriatric dogs, but no consistent patterns in transcription were observed. The insight these data provide into gene expression profiles of canine skeletal muscle as affected by age, could serve as a foundation for future research pertaining to age-related muscle diseases

    The Function of Hypoxia-Inducible Factor (HIF) Is Independent of the Endoplasmic Reticulum Protein OS-9

    Get PDF
    The protein β€œamplified in osteosarcoma-9” (OS-9) has been shown previously to interact with the prolyl hydroxylases PHD2 and PHD3. These enzymes initiate oxygen-dependent degradation of the Ξ±-subunit of hypoxia-inducible factor (HIF), a transcription factor that adapts cells to insufficient oxygen supply (hypoxia). A new model has been proposed where OS-9 triggers PHD dependent degradation of HIF-Ξ±. It was the aim of our study to define the molecular mode of action of OS-9 in the regulation of PHD and HIF activity. Although initial co-immunoprecipitation experiments confirmed physical interaction between OS-9 and PHD2, neither overexpression nor lentiviral inhibition of OS-9 expression affected HIF regulation. Subcellular localization experiments revealed a distinct reticular staining pattern for OS-9 while PHD2 was mainly localized in the cytoplasm. Further cell fractionation experiments and glycosylation tests indicated that OS-9 is a luminal ER protein. In vivo protein interaction analysis by fluorescence resonance energy transfer (FRET) showed no significant physical interaction of overexpressed PHD2-CFP and OS-9-YFP. We conclude that OS-9 plays no direct functional role in HIF degradation since physical interaction of OS-9 with oxygen sensing HIF prolyl hydroxylases cannot occur in vivo due to their different subcellular localization
    • …
    corecore