3,210 research outputs found

    Evidence of Explosive Evaporation in a Microflare Observed by Hinode/EIS

    Full text link
    We present a detailed study of explosive chromospheric evaporation during a microflare which occurred on 2007 December 7 as observed with the EUV Imaging Spectrometer (EIS) onboard Hinode. We find temperature-dependent upflows for lines formed from 1.0 to 2.5 MK and downflows for lines formed from 0.05 to 0.63 MK in the impulsive phase of the flare. Both the line intensity and the nonthermal line width appear enhanced in most of the lines and are temporally correlated with the time when significant evaporation was observed. Our results are consistent with the numerical simulations of flare models, which take into account a strong nonthermal electron beam in producing the explosive chromospheric evaporation. The explosive evaporation observed in this microflare implies that the same dynamic processes may exist in events with very different magnitudes.Comment: 14 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    An assessment of Fe XX - Fe XXII emission lines in SDO/EVE data as diagnostics for high density solar flare plasmas using EUVE stellar observations

    Get PDF
    The Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory obtains extreme-ultraviolet (EUV) spectra of the full-disk Sun at a spectral resolution of ~1 A and cadence of 10 s. Such a spectral resolution would normally be considered to be too low for the reliable determination of electron density (N_e) sensitive emission line intensity ratios, due to blending. However, previous work has shown that a limited number of Fe XXI features in the 90-60 A wavelength region of EVE do provide useful N_e-diagnostics at relatively low flare densities (N_e ~ 10^11-10^12 cm^-3). Here we investigate if additional highly ionised Fe line ratios in the EVE 90-160 A range may be reliably employed as N_e-diagnostics. In particular, the potential for such diagnostics to provide density estimates for high N_e (~10^13 cm^-3) flare plasmas is assessed. Our study employs EVE spectra for X-class flares, combined with observations of highly active late-type stars from the Extreme Ultraviolet Explorer (EUVE) satellite plus experimental data for well-diagnosed tokamak plasmas, both of which are similar in wavelength coverage and spectral resolution to those from EVE. Several ratios are identified in EVE data which yield consistent values of electron density, including Fe XX 113.35/121.85 and Fe XXII 114.41/135.79, with confidence in their reliability as N_e-diagnostics provided by the EUVE and tokamak results. These ratios also allow the determination of density in solar flare plasmas up to values of ~10^13 cm^-3.Comment: 7 pages, 3 figures, 2 tables, MNRAS in pres

    Decay Phase Cooling and Inferred Heating of M- and X-class Solar Flares

    Full text link
    In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared to the predictions of an analytical 0-D hydrodynamic model. It is found that the model does not fit the observations well, but does provide a well defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy as calculated with GOES. This decay phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay phase heating in small flares. However, in the most energetic flares the decay phase heating inferred from the model can be several times greater than the peak thermal energy.Comment: Published in the Astrophysical Journal, 201

    RHESSI and SOHO/CDS Observations of Explosive Chromospheric Evaporation

    Full text link
    Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) onboard SOHO. For the first time, co-spatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of non-thermal electrons accelerated during the impulsive phase of an M2.2 flare. Assuming a thick-target model, the injected electron spectrum was found to have a spectral index of ~7.3, a low energy cut-off of ~20 keV, and a resulting flux of >4x10^10 ergs cm^-2 s^-1. The dynamic response of the atmosphere was determined using CDS spectra, finding a mean upflow velocity of 230+/-38 km s^-1 in Fe XIX (592.23A), and associated downflows of 36+/-16 km s^-1 and 43+/-22 km s^-1 at chromospheric and transition region temperatures, respectively, relative to an averaged quiet-Sun spectra. The errors represent a 1 sigma dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.Comment: 5 pages, 4 figures, ApJL (In Press

    Techniques for improving reliability of computers

    Get PDF
    Modular design techniques improve methods of error detection, diagnosis, and recovery. Theoretical computer (MARCS (Modular Architecture for Reliable Computer Systems)) study deals with postulated and modeled technology indigenous to 1975-1980. Study developments are discussed

    Chromospheric Velocities of a C-class Flare

    Full text link
    We use high spatial and temporal resolution observations from the Swedish Solar Telescope to study the chromospheric velocities of a C-class flare originating from active region NOAA 10969. A time-distance analysis is employed to estimate directional velocity components in H-alpha and Ca II K image sequences. Also, imaging spectroscopy has allowed us to determine flare-induced line-of-sight velocities. A wavelet analysis is used to analyse the periodic nature of associated flare bursts. Time-distance analysis reveals velocities as high as 64 km/s along the flare ribbon and 15 km/s perpendicular to it. The velocities are very similar in both the H-alpha and Ca II K time series. Line-of-sight H-alpha velocities are red-shifted with values up to 17 km/s. The high spatial and temporal resolution of the observations have allowed us to detect velocities significantly higher than those found in earlier studies. Flare bursts with a periodicity of approximately 60 s are also detected. These bursts are similar to the quasi-periodic oscillations observed at hard X-ray and radio wavelength data. Some of the highest velocities detected in the solar atmosphere are presented. Line-of-sight velocity maps show considerable mixing of both the magnitude and direction of velocities along the flare path. A change in direction of the velocities at the flare kernel has also been detected which may be a signature of chromospheric evaporation.Comment: Accepted for publication in Astronomy and Astrophysics, 5 figure

    A Si IV/O IV electron density diagnostic for the analysis of IRIS solar spectra

    Get PDF
    Solar spectra of ultraviolet bursts and flare ribbons from the Interface Region Imaging Spectrograph (IRIS) have suggested high electron densities of >1012>10^{12} cm3^{-3} at transition region temperatures of 0.1 MK, based on large intensity ratios of Si IV λ\lambda1402.77 to O IV λ\lambda1401.16. In this work a rare observation of the weak O IV λ\lambda1343.51 line is reported from an X-class flare that peaked at 21:41 UT on 2014 October 24. This line is used to develop a theoretical prediction of the Si IV λ\lambda1402.77 to O IV λ\lambda1401.16 ratio as a function of density that is recommended to be used in the high density regime. The method makes use of new pressure-dependent ionization fractions that take account of the suppression of dielectronic recombination at high densities. It is applied to two sequences of flare kernel observations from the October 24 flare. The first shows densities that vary between 3×10123\times 10^{12} to 3×10133 \times 10^{13} cm3^{-3} over a seven minute period, while the second location shows stable density values of around 2×10122\times 10^{12} cm3^{-3} over a three minute period.Comment: 12 pages, 5 figures, submitted to Ap

    Laser aiming simulation /LASIM/ Final report, Feb. 1967 - May 1968

    Get PDF
    Laser aiming simulation models for synchronous satellite optical communication system

    Metal-insulator transition in a doped semiconductor

    Get PDF
    Millikelvin measurements of the conductivity as a function of donor density and uniaxial stress in bulk samples of phosphorus-doped silicon establish that the transition from metal to insulator is continuous, but sharper than predicted by scaling theories of localization. The divergence of the dielectric susceptibility as the transition is approached from below also points out problems in current scaling theories. The temperature dependence of the conductivity and the magnetoresistance in the metal indicate the importance of Coulomb interactions in describing the behavior of disordered systems

    The Thermal Properties of Solar Flares Over Three Solar Cycles Using GOES X-ray Observations

    Full text link
    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated temperature and emission measure-based background subtraction method (TEBBS), which builds on the methods of Bornmann (1990). Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. (2005). TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power-laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The resulting TEBBS database of thermal flare plasma properties is publicly available on Solar Monitor (www.solarmonitor.org/TEBBS/) and will be available on Heliophysics Integrated Observatory (www.helio-vo.eu)
    corecore