30 research outputs found

    Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2

    Get PDF
    The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the stop codon. This latter mRNA codes for full length Cav1.4 protein, detectable by Western blot analysis that is predicted to differ from wild type Cav1.4 protein in a region of approximately 22 amino acids in the N-terminal portion of the protein. Electrophysiological analysis with either mouse Cav1.4wt or Cav1.4nob2 cDNA revealed that the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics; however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the alternatively spliced N-terminus did not. The Cacna1fnob2 mouse electroretinogram displayed reduced b-wave and oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the spatial contrast sensitivity (optokinetic response) of Cacna1fnob2 mice was generally similar to that of wild type mice. These results suggest the Cacna1fnob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn element can lead to full-length Cav1.4 protein, albeit at reduced levels, and the functional Cav1.4 mutant may be incapable of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1fnob2 mouse to detect and follow moving sine-wave gratings compared to their wild type counterparts

    Comprehensive Genomic Analysis of a BRCA2 Deficient Human Pancreatic Cancer

    Get PDF
    Capan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples. We demonstrate that Capan-1 has one of the most rearranged genomes sequenced to date. Furthermore, small insertions and deletions are detected more frequently in the context of short sequence repeats than in other genomes. We also identify a number of novel mutations that may represent genetic changes that have contributed to tumour progression. These data provide insight into the genomic effects of loss of BRCA2 function

    Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life

    Full text link

    Behçet Syndrome Associated with Protein S Deficiency

    No full text

    Gene duplication as a major force driving the genome expansion in some giant viruses

    No full text
    International audienceGiant viruses with their gigantic genomes are among the most intriguing components of the virosphere. How these viruses attained such giant genomes remains unclear, despite considerable efforts to understand this phenomenon. Here, we describe the discovery of cedratvirus pambiensis, an amoebal giant virus isolated in Brazil. Although the virion morphology and replication cycle of c. pambiensis are very similar to those described for other cedratviruses, whole genome sequencing revealed the largest cedratvirus genome ever described, with 623,564 base pairs and 842 predicted protein-coding genes (among them, 76 ORFans). Genome analysis has revealed an unprecedented number of paralogous genes, with ~73% of the c. pambiensis genome being composed of genes with two or more copies. Large families of functionally diverse paralogous genes included up to >70 copies and were distributed across the genome. The in-depth investigation of the mechanisms and origins of gene duplications revealed that both tandem-like duplications and distal transfer of syntenic blocks of genes contributed to the c. pambiensis genomic expansion. Finally, a comprehensive genome analysis of viruses from all known giant virus families suggested that gene duplication is one of the key mechanisms underlying genomic gigantism across the phylum Nucleocytoviricota . The expansion of viral genomes through successive duplications followed by subfunctionalization and exaptation of the paralogous gene copies may promote the adaptation of giant viruses to a variety of niches. IMPORTANCE Giant viruses are noteworthy not only due to their enormous particles but also because of their gigantic genomes. In this context, a fundamental question has persisted: how did these genomes evolve? Here we present the discovery of cedratvirus pambiensis, featuring the largest genome ever described for a cedratvirus. Our data suggest that the larger size of the genome can be attributed to an unprecedented number of duplicated genes. Further investigation of this phenomenon in other viruses has illuminated gene duplication as a key evolutionary mechanism driving genome expansion in diverse giant viruses. Although gene duplication has been described as a recurrent event in cellular organisms, our data highlights its potential as a pivotal event in the evolution of gigantic viral genomes

    Netrin-1 mediates neuronal survival through PIKE-L interaction with the dependence receptor UNC5B

    No full text
    Netrins, a family of secreted molecules, have critical functions in axon guidance and cell migration during neuronal development. In addition to its role as a chemotropic molecule, netrin-1 also acts as a survival factor. Both UNC5 (that is, UNC5A, UNC5B, UNC5C or UNC5D) and DCC are transmembrane receptors for netrin-1 (Refs 8, 9). In the absence of netrin-1, DCC and UNC5 act as dependence receptors and trigger apoptosis. However, how netrin-1 suppresses the apoptotic activity of the receptors remains elusive. Here we show that netrin-1 induces interaction of UNC5B with the brain-specific GTPase PIKE-L. This interaction triggers the activation of PtdIns-3-OH kinase signalling, prevents UNC5B's pro-apoptotic activity and enhances neuronal survival. Moreover, this process relies strongly on Fyn because PIKE-L is tyrosine phosphorylated in response to netrin-1, and the netrin-1-mediated interaction of UNC5B with PIKE-L is inhibited in Fyn-null mice. Thus, PIKE-L acts as a downstream survival effector for netrin-1 through UNC5B in the nervous system.Link_to_subscribed_fulltex
    corecore