31,568 research outputs found

    Dynamical Supersymmetry Breaking and Low Energy Gauge Mediation

    Full text link
    Dynamical breaking of supersymmetry was long thought to be an exceptional phenomenon, but recent developments have altered this view. A question of great interest in the current framework is the value of the underlying scale of supersymmetry breaking. The "little hierarchy" problem suggests that supersymmetry should be broken at low energies. Within one class of models, low energy breaking be achieved as a consequence of symmetries, without requiring odd coincidences. The low energy theories are distinguished by the presence or absence of RR symmetries; in either case, and especially the latter one often finds modifications of the minimal gauge-mediated spectrum which can further ameliorate problems of fine tuning. Various natural mechanisms exist to solve the μ\mu problem in this framework.Comment: 20 pages (minor change in referencing

    Aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed with forward-swept wings and canards

    Get PDF
    The Langley 16 foot transonic tunnel was used to determine the aeropropulsive characteristics of twin single-expansion-ramp vectoring nozzles installed in a wing-body configuration with forward-swept wings. The configuration was tested with and without fixed canards. The test conditions included free-stream Mach numbers of 0.60, 0.90, and 1.20. The model angle of attack ranged from -2 deg to 14 deg; the nozzle pressure ratio ranged from 1.0 (jet off) to 9.0. The Reynolds number based on the wing mean aerodynamic chord varied from 3.0 x 10 to the 6th power to 4.8 x 10 to the 6th power, depending on Mach number. Aerodynamic characteristics were analyzed to determine the effects of thrust vectoring and the canard effects on the wing-afterbody-nozzle and the wing-afterbody portions of the model. Thrust vectoring had no effect on the angle of attack for the onset of flow separation on the wing but resulted in reduced drag at angle-of-attack values above that required for wing flow separation. The canard was found to have little effect on the thrust-induced lift resulting from vectoring, since canard effects occurred primarily on the wing

    Interference effects of thrust reversing on horizontal tail effectiveness of twin-engine fighter aircraft at Mach numbers from 0.15 to 0.90

    Get PDF
    An investigation was conducted in the Langley 16 foot Transonic Tunnel to determine the interference effects of thrust reversing on horizontal tail effectiveness of a twin engine, general research fighter model at approach and in-flight speeds. Twin vertical tails at three longitudinal locations were tested at a cant angle of 0 deg. One configuration was also tested at a cant angle of 20 deg. Two nonaxisymmetric nozzle reverser concepts were studied. Test data were obtained at Mach numbers of 0.15, 0.60, and 0.90 and at angles of attack from -3 to 9 deg. Nozzle pressure ratios varied from jet off to 7.0, depending upon Mach number. At landing approach speed (Mach number 0.15), thrust reverser operation usually resulted in large variations (up to 70% increase) in horizontal tail effectiveness as nozzle pressure ratio was varied at zero angle of attack or as angle of attack was varied at constant nozzle pressure ratio. There was always a decrease in effectiveness at Mach numbers of 0.60 and 0.90 as a result of reverser operation

    Contracting for Impure Public Goods: Carbon Offsets and Additionality

    Get PDF
    Governments contracting with private agents for the provision of an impure public good must contend with agents who would potentially supply the good absent any payments. This additionality problem is centrally important in the use of carbon offsets as part of climate change mitigation. Analyzing optimal contracts for forest carbon sequestration, an important offset category, we conduct a national-scale simulation using results from an econometric model of land-use change. The results indicate that for an increase in forest area of 50 million acres, annual government expenditures with optimal contracts are about $4 billion lower compared than under a uniform subsidy.Carbon Sequestration, Incentive Contracting, Offsets, Additionality

    Quantum Flux and Reverse Engineering of Quantum Wavefunctions

    Full text link
    An interpretation of the probability flux is given, based on a derivation of its eigenstates and relating them to coherent state projections on a quantum wavefunction. An extended definition of the flux operator is obtained using coherent states. We present a "processed Husimi" representation, which makes decisions using many Husimi projections at each location. The processed Husimi representation reverse engineers or deconstructs the wavefunction, yielding the underlying classical ray structure. Our approach makes possible interpreting the dynamics of systems where the probability flux is uniformly zero or strongly misleading. The new technique is demonstrated by the calculation of particle flow maps of the classical dynamics underlying a quantum wavefunction.Comment: Accepted to EP

    Collapsible reflector Patent

    Get PDF
    Self erecting parabolic reflector design for use in spac
    • …
    corecore