924 research outputs found
Automation of the matrix element reweighting method
Matrix element reweighting is a powerful experimental technique widely
employed to maximize the amount of information that can be extracted from a
collider data set. We present a procedure that allows to automatically evaluate
the weights for any process of interest in the standard model and beyond. Given
the initial, intermediate and final state particles, and the transfer functions
for the final physics objects, such as leptons, jets, missing transverse
energy, our algorithm creates a phase-space mapping designed to efficiently
perform the integration of the squared matrix element and the transfer
functions. The implementation builds up on MadGraph, it is completely
automatized and publicly available. A few sample applications are presented
that show the capabilities of the code and illustrate the possibilities for new
studies that such an approach opens up.Comment: 41 pages, 21 figure
Macroscopic Discontinuous Shear Thickening vs Local Shear Jamming in Cornstarch
We study the emergence of discontinuous shear-thickening (DST) in cornstarch,
by combining macroscopic rheometry with local Magnetic Resonance Imaging (MRI)
measurements. We bring evidence that macroscopic DST is observed only when the
flow separates into a low-density flowing and a high-density jammed region. In
the shear-thickened steady state, the local rheology in the flowing region, is
not DST but, strikingly, is often shear-thinning. Our data thus show that the
stress jump measured during DST, in cornstach, does not capture a secondary,
high-viscosity branch of the local steady rheology, but results from the
existence of a shear jamming limit at volume fractions quite significantly
below random close packing.Comment: To be published in PR
Rearrangements and Dilatancy for Sheared Dense Materials
Constitutive equations are proposed for dense materials, based on the
identification of two types of free-volume activated rearrangements associated
to shear and compaction. Two situations are studied: the case of an amorphous
solid in a stress-strain test, and the case of a lubricant in tribology test.
Varying parameters, strain softening, shear thinning, and stick-slip motion can
be observed.Comment: 4 pages, 3 figure
CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe
The current authors have previously shown that inhomogeneous, but spherically
symmetric universe models containing only matter can yield a very good fit to
the SNIa data and the position of the first CMB peak. In this work we examine
how far away from the center of inhomogeneity the observer can be located in
these models and still fit the data well. Furthermore, we investigate whether
such an off-center location can explain the observed alignment of the lowest
multipoles of the CMB map. We find that the observer has to be located within a
radius of 15 Mpc from the center for the induced dipole to be less than that
observed by the COBE satellite. But for such small displacements from the
center, the induced quadru- and octopoles turn out to be insufficiently large
to explain the alignment.Comment: 8 pages (REVTeX4), 7 figures; v2: minor changes, matches published
versio
The Origin of a Repose Angle: Kinetics of Rearrangements for Granular Materials
A microstructural theory of dense granular materials is presented, based on
two main ideas. Firstly, that macroscopic shear results form activated local
rearrangements at a mesoscopic scale. Secondly, that the update frequency of
microscopic processes is determined by granular temperature. In a shear cell,
the resulting constitutive equations account for Bagnold's scaling and for the
existence of a Coulomb criterion of yield. In the case of a granular flow down
an inclined plane, they account for the rheology observed in recent experiments
and for the temperature and velocity profiles measured numerically.Comment: submitted to PR
On-chip III-V monolithic integration of heralded single photon sources and beamsplitters
We demonstrate a monolithic III-V photonic circuit combining a heralded
single photon source with a beamsplitter, at room temperature and telecom
wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates
counterpropagating photons, one of which is used to herald the injection of its
twin into the beamsplitter. We use this configuration to implement an
integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order
correlation that confirms single-photon
operation. The demonstrated generation and manipulation of quantum states on a
single III-V semiconductor chip opens promising avenues towards real-world
applications in quantum information
Light-cone averages in a swiss-cheese universe
We analyze a toy swiss-cheese cosmological model to study the averaging
problem. In our model, the cheese is the EdS model and the holes are
constructed from a LTB solution. We study the propagation of photons in the
swiss-cheese model, and find a phenomenological homogeneous model to describe
observables. Following a fitting procedure based on light-cone averages, we
find that the the expansion scalar is unaffected by the inhomogeneities. This
is because of spherical symmetry. However, the light-cone average of the
density as a function of redshift is affected by inhomogeneities. The effect
arises because, as the universe evolves, a photon spends more and more time in
the (large) voids than in the (thin) high-density structures. The
phenomenological homogeneous model describing the light-cone average of the
density is similar to the concordance model. Although the sole source in the
swiss-cheese model is matter, the phenomenological homogeneous model behaves as
if it has a dark-energy component. Finally, we study how the equation of state
of the phenomenological model depends on the size of the inhomogeneities, and
find that the equation-of-state parameters w_0 and w_a follow a power-law
dependence with a scaling exponent equal to unity. That is, the equation of
state depends linearly on the distance the photon travels through voids. We
conclude that within our toy model, the holes must have a present size of about
250 Mpc to be able to mimic the concordance model.Comment: 20 pages, 14 figures; replaced to fit the version accepted for
publication in Phys. Rev.
How does the Hubble Sphere limit our view of the Universe?
It has recently been claimed that the Hubble Sphere represents a previously
unknown limit to our view of the universe, with light we detect today coming
from a proper distance less than this "Cosmic Horizon" at the present time. By
considering the paths of light rays in several cosmologies, we show that this
claim is not generally true. In particular, in cosmologies dominated by phantom
energy (with an equation of state of \omega < -1) the proper distance to the
Hubble Sphere decreases, and light rays can cross it more than once in both
directions; such behaviour further diminishes the claim that the Hubble Sphere
is a fundamental, but unrecognised, horizon in the universe.Comment: 4 pages, 4 figures: Accepted for publication in Monthly Notices of
the Royal Astronomical Society Letter
Double Distribution of Dark Matter Halos with respect to Mass and Local Overdensity
We present a double distribution function of dark matter halos, with respect
to both object mass and local over- (or under-) density. This analytical tool
provides a statistical treatment of the properties of matter surrounding
collapsed objects, and can be used to study environmental effects on
hierarchical structure formation. The size of the "local environment" of a
collapsed object is defined to depend on the mass of the object. The
Press-Schechter mass function is recovered by integration of our double
distribution over the density contrast. We also present a detailed treatment of
the evolution of overdensities and underdensities in Einstein-deSitter and flat
LCDM universes, according to the spherical evolution model. We explicitly
distinguish between true and linearly extrapolated overdensities and provide
conversion relations between the two quantities.Comment: 25 pages, 10 figures, comments welcom
- …