1,280 research outputs found
Rediscovering the scientific and didactic value of minor herbarium collections: the seeds and fruits collection by Gustavo Bonaventura
Seeds and fruits collections are very important from a systematic point of view and represent useful references in several disciplines and research fields. The Herbarium of Sapienza University of Rome (RO) hosts a Spermoteque/Carpoteque, which was organized by Gustavo Bonaventura (1902-1976). The purpose of this paper is to describe the heritage of Bonaventura's collection. It consists of 42 wooden boxes, globally hosting 3411 glass tubes containing seeds, fruits, and other materials. The collection was first of all catalogued; then, analysis were conducted regarding taxonomic composition, temporal and geographic coverage, institutions of provenience, collectors, content, and preservation status. The specimens refer to 2740 taxa, belonging to 890 genera and 135 families. Many genera of agricultural interest are present, each one with different cultivars. The collection spans across 130 years (1843-1975) and hosts specimens coming from all over the world. Materials were provided by several herbaria, botanical gardens and agrarian institutes, and by 50 collectors. The Bonaventura's collection is still a useful reference collection, testifying biodiversity over times and thus being useful for diachronic studies; moreover, it documents the interests of collectors and the past network activity between institutions
Higher spin fields from a worldline perspective
Higher spin fields in four dimensions, and more generally conformal fields in
arbitrary dimensions, can be described by spinning particle models with a
gauged SO(N) extended supergravity on the worldline. We consider here the
one-loop quantization of these models by studying the corresponding partition
function on the one-dimensional torus. After gauge fixing the supergravity
multiplet, the partition function reduces to an integral over the corresponding
moduli space which is computed using orthogonal polynomial techniques. We
obtain a compact formula which gives the number of physical degrees of freedom
for all N in all dimensions. As an aside we compute the physical degrees of
freedom of the SO(4) = SU(2)xSU(2) model with only a SU(2) factor gauged, which
has attracted some interest in the literature.Comment: 21 page
Nonlinear substructuring in the modal domain: numerical validation and experimental verification in presence of localized nonlinearities
In many systems of interest, most of the structure is well approximated as linear but some parts must be treated as nonlinear to get accurate response predictions: significant nonlinear effects are due to the connections between coupled subsystems, such as in automotive or aerospace structures. The present work aims at predicting the nonlinear behavior of coupled systems using a substructuring technique in the modal domain. This study focuses on the effects of nonlinear connections on the dynamics of an assembly in which the coupled subsystems can be considered as linear. Each connection is instead considered as a quasi-linear substructure with stiffness that is function of amplitude or energy. The iterative procedure used here is enhanced with respect to previous works by enforcing a better control of the total energy at each iteration allowing to obtain the solution for a prescribed set of energy levels. Also, the initial guess and the convergence criterion have been modified to speed up the procedure. This technique is applied to a system made of two continuous linear subsystems coupled by nonlinear connections. The numerical results of the coupling are first compared to the ones obtained by using the Harmonic Balance technique on the model of the complete assembly to evaluate its effectiveness and understand the effects of modal truncation. Besides, a nonlinear connecting element, specifically designed in order to have a nearly cubic hardening behavior, is used in an experimental setup. Substructuring results are compared to experimental results measured on the assembled system, in order to evaluate the correlation between mode shapes and the accuracy in the resonance frequency at several excitation levels
VALUTATION OF OFFICIAL MOUSE BIOASSAY FOR THE DETECTION OF LIPOPHILIC MARINE TOXINS
The official biotoxicological (MBA) method for the determination of lipophilic marine toxins shows important gaps with regard to reproducibility, specificity and quality of the data provided and serious ethical contraindications. The Commission Regulation (EU) No 15/2011 establishes the date of December 31, 2014 as the deadline for replacement of the mouse test with a LC-MS/MS method by the laboratories of the member states responsible for the monitoring of marine biotoxins. In order to facilitate the interpretation of the MBA during this transition period, we further evaluated the specificity and selectivity of this assay in comparison with a LC-MS/MS method in detecting lipophilic marine toxins on mussels of the middle Adriatic Sea. Data show a high percentage of false-positive results on MBA due to interference by yessotoxins. It was also possible to evaluate the toxic profile of the samples analyzed
Osteopontin as Candidate Biomarker of Coronary Disease despite Low Cardiovascular Risk: Insights from CAPIRE Study
Stratification according high cardiovascular (CV) risk categories, still represents a clinical challenge. In this analysis of the CAPIRE study (NCT02157662), we investigate whether inflammation could fit between CV risk factors (RFs) and the presence of coronary artery disease (CAD). In total, 544 patients were included and categorized according with the presence of CAD and CV risk factor burden (low/multiple). The primary endpoint was to verify any independent association of neutrophil-related biomarkers with CAD across CV risk categories. The highest values of osteo-pontin (OPN) were detected in the low RF group and associated with CAD (23.2 vs. 19.4 ng/mL; p = 0.001), although no correlation with plaque extent and/or composition were observed. Con-versely, myeloperoxidase (MPO) and resistin did not differ by CAD presence. Again, OPN was identified as independent variable associated with CAD but only in the low RF group (adjOR 8.42 [95% CI 8.42\u201346.83]; p-value = 0.015). As an ancillary finding, a correlation linked OPN with the neutrophil degranulation biomarker MPO (r = 0.085; p = 0.048) and resistin (r = 0.177; p = 3.4
7 10 125 ). In the present study, OPN further strengthens its role as biomarker of CAD, potentially bridging subclinical CV risk with development of atherosclerosis
Spinal Anesthesia and Minimal Invasive Laminotomy for Paddle Electrode Placement in Spinal Cord Stimulation: Technical Report and Clinical Results at Long-Term Followup
Object. We arranged a mini-invasive surgical approach for implantation of paddle electrodes for SCS under spinal anesthesia obtaining the best paddle electrode placement and minimizing patients' discomfort. We describe our technique supported by neurophysiological intraoperative monitoring and clinical results. Methods. 16 patients, affected by neuropathic pain underwent the implantation of paddle electrodes for spinal cord stimulation in lateral decubitus under spinal anesthesia. The paddle was introduced after flavectomy and each patient confirmed the correct distribution of paresthesias induced by intraoperative test stimulation. VAS and patients' satisfaction rate were recorded during the followup and compared to preoperative values. Results. No patients reported discomfort during the procedure. In all cases, paresthesias coverage of the total painful region was achieved, allowing the best final electrode positioning. At the last followup (mean 36.7 months), 87.5% of the implanted patients had a good rate of satisfaction with a mean VAS score improvement of 70.5%. Conclusions. Spinal cord stimulation under spinal anesthesia allows an optimal positioning of the paddle electrodes without any discomfort for patients or neurosurgeons. The best intraoperative positioning allows a better postoperative control of pain, avoiding the risk of blind placements of the paddle or further surgery for their replacement
Tetris Genioplasty: A New Paradigm for Chin Asymmetries Correction
The chin plays a crucial role as a fundamental structural component that contributes to the overall aesthetics and harmony of the face. Recognizing its central position, medical science has seen the evolution of numerous surgical techniques over the years, all aimed at correcting the range of structural irregularities that can affect the chin. In this contribution, the authors introduce an innovative osteotomy technique, aimed at cases of chin asymmetry in which the skeletal median diverges from the dental median. This technique, called “Tetris genioplasty”, involves performing the classic rectangular osteotomy, but includes an additional vertical osteotomy in order to obtain two distinct segments. Finally, these segments are translocated and repositioned to obtain a realignment between the skeletal median and the dental median. The results were entirely satisfactory for the patients, aligning perfectly with the expected appearance after the operation. Furthermore, no complications were reported, proving the success and safety of the procedure. The Tetris genioplasty aligns itself with this progressive trend by offering a minimally invasive method that nevertheless is able to achieve excellent results with a high impact on the patient’s quality of life, presenting a promising path in the pursuit of optimal aesthetic results with minimized patient morbidity and greater overall safety
Pentraxin 3 in cardiovascular disease
The long pentraxin PTX3 is a member of the pentraxin family produced locally by stromal and myeloid cells in response to proinflammatory signals and microbial moieties. The prototype of the pentraxin family is C reactive protein (CRP), a widely-used biomarker in human pathologies with an inflammatory or infectious origin. Data so far describe PTX3 as a multifunctional protein acting as a functional ancestor of antibodies and playing a regulatory role in inflammation. Cardiovascular disease (CVD) is a leading cause of mortality worldwide, and inflammation is crucial in promoting it. Data from animal models indicate that PTX3 can have cardioprotective and atheroprotective roles regulating inflammation. PTX3 has been investigated in several clinical settings as possible biomarker of CVD. Data collected so far indicate that PTX3 plasma levels rise rapidly in acute myocardial infarction, heart failure and cardiac arrest, reflecting the extent of tissue damage and predicting the risk of mortality
- …