1,922 research outputs found
Predicted band structures of III-V semiconductors in wurtzite phase
While non-nitride III-V semiconductors typically have a zincblende structure,
they may also form wurtzite crystals under pressure or when grown as
nanowhiskers. This makes electronic structure calculation difficult since the
band structures of wurtzite III-V semiconductors are poorly characterized. We
have calculated the electronic band structure for nine III-V semiconductors in
the wurtzite phase using transferable empirical pseudopotentials including
spin-orbit coupling. We find that all the materials have direct gaps. Our
results differ significantly from earlier {\it ab initio} calculations, and
where experimental results are available (InP, InAs and GaAs) our calculated
band gaps are in good agreement. We tabulate energies, effective masses, and
linear and cubic Dresselhaus zero-field spin-splitting coefficients for the
zone-center states. The large zero-field spin-splitting coefficients we find
may lead to new functionalities for designing devices that manipulate spin
degrees of freedom
Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties
The properties of an exciton in a type II quantum dot are studied under the
influence of a perpendicular applied magnetic field. The dot is modelled by a
quantum disk with radius , thickness and the electron is confined in the
disk, whereas the hole is located in the barrier. The exciton energy and
wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish
two different regimes, namely (the hole is located at the radial
boundary of the disk) and (the hole is located above and below the
disk), for which angular momentum transitions are predicted with
increasing magnetic field. We also considered a system of two vertically
coupled dots where now an extra parameter is introduced, namely the interdot
distance . For each and for a sufficient large magnetic field,
the ground state becomes spontaneous symmetry broken in which the electron and
the hole move towards one of the dots. This transition is induced by the
Coulomb interaction and leads to a magnetic field induced dipole moment. No
such symmetry broken ground states are found for a single dot (and for three
vertically coupled symmetric quantum disks). For a system of two vertically
coupled truncated cones, which is asymmetric from the start, we still find
angular momentum transitions. For a symmetric system of three vertically
coupled quantum disks, the system resembles for small the pillar-like
regime of a single dot, where the hole tends to stay at the radial boundary,
which induces angular momentum transitions with increasing magnetic field. For
larger the hole can sit between the disks and the state
remains the groundstate for the whole -region.Comment: 11 pages, 16 figure
The Standard Model from a New Phase Transition on the Lattice
Several years ago it was conjectured in the so-called Roma Approach, that
gauge fixing is an essential ingredient in the lattice formulation of chiral
gauge theories. In this paper we discuss in detail how the gauge-fixing
approach may be realized. As in the usual (gauge invariant) lattice
formulation, the continuum limit corresponds to a gaussian fixed point, that
now controls both the transversal and the longitudinal modes of the gauge
field. A key role is played by a new phase transition separating a conventional
Higgs or Higgs-confinement phase, from a phase with broken rotational
invariance. In the continuum limit we expect to find a scaling region, where
the lattice correlators reproduce the euclidean correlation functions of the
target (chiral) gauge theory, in the corresponding continuum gauge.Comment: 16 pages, revtex, one figure. Clarifications made, mainly in sections
3 and 6 that deal with the fermion action, to appear in Phys Rev
Magnetotransport in inhomogeneous magnetic fields
Quantum transport in inhomogeneous magnetic fields is investigated
numerically in two-dimensional systems using the equation of motion method. In
particular, the diffusion of electrons in random magnetic fields in the
presence of additional weak uniform magnetic fields is examined. It is found
that the conductivity is strongly suppressed by the additional uniform magnetic
field and saturates when the uniform magnetic field becomes on the order of the
fluctuation of the random magnetic field. The value of the conductivity at this
saturation is found to be insensitive to the magnitude of the fluctuation of
the random field. The effect of random potential on the magnetoconductance is
also discussed.Comment: 5 pages, 5 figure
Resting tachycardia, a warning sign in anorexia nervosa: case report
BACKGROUND: Among psychiatric disorders, anorexia nervosa has the highest mortality rate. During an exacerbation of this illness, patients frequently present with nonspecific symptoms. Upon hospitalization, anorexia nervosa patients are often markedly bradycardic, which may be an adaptive response to progressive weight loss and negative energy balance. When anorexia nervosa patients manifest tachycardia, even heart rates in the 80–90 bpm range, a supervening acute illness should be suspected. CASE PRESENTATION: A 52-year old woman with longstanding anorexia nervosa was hospitalized due to progressive leg pain, weakness, and fatigue accompanied by marked weight loss. On physical examination she was cachectic but in no apparent distress. She had fine lanugo-type hair over her face and arms with an erythematous rash noted on her palms and left lower extremity. Her blood pressure was 96/50 mm Hg and resting heart rate was 106 bpm though she appeared euvolemic. Laboratory tests revealed anemia, mild leukocytosis, and hypoalbuminemia. She was initially treated with enteral feedings for an exacerbation of anorexia nervosa, but increasing leukocytosis without fever and worsening left leg pain prompted the diagnosis of an indolent left lower extremity cellulitis. With antibiotic therapy her heart rate decreased to 45 bpm despite minimal restoration of body weight. CONCLUSIONS: Bradycardia is a characteristic feature of anorexia nervosa particularly with significant weight loss. When anorexia nervosa patients present with nonspecific symptoms, resting tachycardia should prompt a search for potentially life-threatening conditions
Bovine Follicular Dynamics, Oocyte Recovery,and Development of Oocytes Microinjected with a Green Fluorescent Protein Construct
The present study was carried out to 1) evaluate the viability of in vitro fertilized zygotes after microinjection of DNA, 2) assess the influence of oocyte quality upon the development rate of embryos when injected with DNA, and 3) determine the integration frequency of green fluorescent protein DNA into microinjected embryos. Oocytes were aspirated from ovaries of nine nonlactating Holsteins and were categorized into grades A, B, C, and D. At 16 h after in vitro fertilization, approximately half of the pronuclear stage presumptive zygotes were classified as having 1 pronucleus or 2 pronuclei, and they were microinjected with DNA constructs. A potential predictor of DNA integration frequency at d 10 was assessment of the incidence of green fluorescing embryos. The proportion of cleaved embryos that developed to morulae or blastocysts was not different between groups with 1 pronucleus injected (45%), 1 pronucleus uninjected (64%), or 2 pronuclei injected (49%). However, the development of morulae or blastocysts was higher in the group with 2 pronuclei uninjected (69%). The overall developmental score of green fluorescent protein-positive embryos was higher for grade A oocytes (1.3 &#;&#;0.1) than for grade B (0.8 &#; 0.1), C (0.6 &#;&#;0.1), or D (0.3 &#;&#;0.1) oocytes. The results show that production of transgenic bovine blastocysts can occur from the microinjection of a presumptive zygote having only one visible pronucleus. Initial oocyte quality is an important factor in selection of oocytes suitable for microinjection of DNA and for preimplantation development to produce bovine transgenic embryos
Testing Newtonian Gravity with AAOmega: Mass-to-Light Profiles of Four Globular Clusters
Testing Newtonian gravity in the weak-acceleration regime is vital to our
understanding of the nature of the gravitational interaction. It has recently
been claimed that the velocity dispersion profiles of several globular clusters
flatten out at large radii, reminiscent of galaxy rotation curves, even though
globular clusters are thought to contain little or no dark matter. We
investigate this claim, using AAOmega observations of four globular clusters,
namely M22, M30, M53 and M68. M30, one such cluster that has had this claim
made for its velocity dispersion, was included for comparison with previous
studies. We find no statistically significant flattening of the velocity
dispersion at large radii for any of our target clusters and therefore we infer
the observed dynamics do not require that globular clusters are dark matter
dominated, or a modification of gravity. Furthermore, by applying a simple
dynamical model we determine the radial mass-to-light profiles for each
cluster. The isothermal rotations of each cluster are also measured, with M22
exhibiting clear rotation, M68 possible rotation and M30 and M53 lacking any
rotation, within the uncertainties.Comment: 7 pages, 4 figures and two tables. Accepted by MNRA
SMASH 1 : A VERY FAINT GLOBULAR CLUSTER DISRUPTING in the OUTER REACHES of the LMC?
We present the discovery of a very faint stellar system, SMASH 1, that is potentially a satellite of the Large Magellanic Cloud. Found within the Survey of the Magellanic Stellar History (SMASH), SMASH 1 is a compact (rh=9.1-3.4+5.9pc) and very low luminosity (Mv=-1.0±0.9,Lv=102.3±0.4L⊙ ) stellar system that is revealed by its sparsely populated main sequence and a handful of red giant branch candidate member stars. The photometric properties of these stars are compatible with a metal-poor ([Fe/H]=-2.2) and old (13 Gyr) isochrone located at a distance modulus of ∼18.8, i.e., a distance of . Situated at 11.°3 from the LMC in projection, its three-dimensional distance from the Cloud is 13 kpc, consistent with a connection to the LMC, whose tidal radius is at least . Although the nature of SMASH 1 remains uncertain, its compactness favors it being a stellar cluster and hence dark-matter free. If this is the case, its dynamical tidal radius is only ≲19 pc at this distance from the LMC, and smaller than the system's extent on the sky. Its low luminosity and apparent high ellipticity (ϵ=0.62-0.21+0.17) with its major axis pointing toward the LMC may well be the tell-tale sign of its imminent tidal demise.Peer reviewe
- …