18 research outputs found
Biological CO2-methanation: An approach to standardization
Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are diffcult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes
Privacy Enhancing Technologies (PETs) for connected vehicles in smart cities
Many Experts believe that the Internet of Things (IoT) is a new revolution in technology that has brought many benefits for our organizations, businesses, and industries. However, information security and privacy protection are important challenges particularly for smart vehicles in smart cities that have attracted the attention of experts in this domain. Privacy Enhancing Technologies (PETs) endeavor to mitigate the risk of privacy invasions, but the literature lacks a thorough review of the approaches and techniques that support individuals' privacy in the connection between smart vehicles and smart cities. This gap has stimulated us to conduct this research with the main goal of reviewing recent privacy-enhancing technologies, approaches, taxonomy, challenges, and solutions on the application of PETs for smart vehicles in smart cities. The significant aspect of this study originates from the inclusion of data-oriented and process-oriented privacy protection. This research also identifies limitations of existing PETs, complementary technologies, and potential research directions
Infection control measures and prevalence of SARS-CoV-2 IgG among 4,554 University Hospital Employees, Munich, Germany.
Hospital staff are at high risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the coronavirus disease (COVID-19) pandemic. This cross-sectional study aimed to determine the prevalence of SARS-CoV-2 infection in hospital staff at the University Hospital rechts der Isar in Munich, Germany, and identify modulating factors. Overall seroprevalence of SARS-CoV-2-IgG in 4,554 participants was 2.4%. Staff engaged in direct patient care, including those working in COVID-19 units, had a similar probability of being seropositive as non–patient-facing staff. Increased probability of infection was observed in staff reporting interactions with SARS-CoV-2-infected coworkers or private contacts or exposure to COVID-19 patients without appropriate personal protective equipment. Analysis of spatiotemporal trajectories identified that distinct hotspots for SARS-CoV-2-positive staff and patients only partially overlap. Patient-facing work in a healthcare facility during the SARS-CoV-2 pandemic might be safe as long as adequate personal protective equipment is used and infection prevention practices are followed inside and outside the hospital
Enhancing reuse of data and biological material in medical research: From FAIR to FAIR-health.
The known challenge of underutilization of data and biological material from biorepositories as potential resources for medical research has been the focus of discussion for over a decade. Recently developed guidelines for improved data availability and reusability - entitled FAIR Principles (Findability, Accessibility, Interoperability, and Reusability) - are likely to address only parts of the problem. In this article, we argue that biological material and data should be viewed as a unified resource. This approach would facilitate access to complete provenance information, which is a prerequisite for reproducibility and meaningful integration of the data. A unified view also allows for optimization of long-term storage strategies, as demonstrated in the case of biobanks. We propose an extension of the FAIR Principles to include the following additional components: (1) quality aspects related to research reproducibility and meaningful reuse of the data, (2) incentives to stimulate effective enrichment of data sets and biological material collections and its reuse on all levels, and (3) privacy-respecting approaches for working with the human material and data. These FAIR-Health principles should then be applied to both the biological material and data. We also propose the development of common guidelines for cloud architectures, due to the unprecedented growth of volume and breadth of medical data generation, as well as the associated need to process the data efficiently
Population-based screening in children for early diagnosis and treatment of familial hypercholesterolemia: Design of the VRONI study.
BACKGROUND: Heterozygous familial hypercholesterolemia (FH) represents the most frequent monogenic disorder with an estimated prevalence of 1:250 in the general population. Diagnosis during childhood enables early initiation of preventive measures, reducing the risk of severe consecutive atherosclerotic manifestations. Nevertheless, population-based screening programs for FH are scarce. METHODS: In the VRONI study, children aged 5-14 years in Bavaria are invited to participate in an FH screening program during regular pediatric visits. The screening is based on low-density lipoprotein cholesterol measurements from capillary blood. If exceeding 130 mg/dl (3.34 mmol/l), i.e. the expected 95th percentile in this age group, subsequent molecular genetic analysis for FH is performed. Children with FH pathogenic variants enter a registry and are treated by specialized pediatricians. Furthermore, qualified training centers offer FH-focused training courses to affected families. For first-degree relatives, reverse cascade screening is recommended to identify and treat affected family members. RESULTS: Implementation of VRONI required intensive prearrangements for addressing ethical, educational, data safety, legal and organizational aspects, which will be outlined in this article. Recruitment started in early 2021, within the first months, more than 380 pediatricians screened over 5200 children. Approximately 50 000 children are expected to be enrolled in the VRONI study until 2024. CONCLUSIONS: VRONI aims to test the feasibility of a population-based screening for FH in children in Bavaria, intending to set the stage for a nationwide FH screening infrastructure. Furthermore, we aim to validate genetic variants of unclear significance, detect novel causative mutations and contribute to polygenic risk indices (DRKS00022140; August 2020)