780 research outputs found
Two-Staged Magnetoresistance Driven by Ising-like Spin Sublattice in SrCo6O11
A two-staged, uniaxial magnetoresistive effect has been discovered in
SrCo6O11 having a layered hexagonal structure. Conduction electrons and
localized Ising spins are in different sublattices but their interpenetration
makes the conduction electrons sensitively pick up the stepwise
field-dependence of magnetization. The stepwise field-dependence suggests two
competitive interlayer interactions between ferromagnetic Ising-spin layers,
i.e., a ferromagnetic nearest-layer interaction and an antiferromagnetic
next-nearest-layer interaction. This oxide offers a unique opportunity to study
nontrivial interplay between conduction electrons and Ising spins, the coupling
of which can be finely controlled by a magnetic field of a few Tesla.Comment: 14 pages, 4 figures, accepted for publication in Phys. Rev. Let
Orbital degeneracy as a source of frustration in LiNiO
Motivated by the absence of cooperative Jahn-Teller effect and of magnetic
ordering in LiNiO, a layered oxide with triangular planes, we study a
general spin-orbital model on the triangular lattice. A mean-field approach
reveals the presence of several singlet phases between the SU(4) symmetric
point and a ferromagnetic phase, a conclusion supported by exact
diagonalizations of finite clusters. We argue that one of the phases,
characterized by a large number of low-lying singlets associated to dimer
coverings of the triangular lattice, could explain the properties of LiNiO,
while a ferro-orbital phase that lies nearby in parameter space leads to a new
prediction for the magnetic properties of NaNiO.Comment: 18 pages, 17 figure
Gapless Magnetic and Quasiparticle Excitations due to the Coexistence of Antiferromagnetism and Superconductivity in CeRhIn : A study of In-NQR under Pressure
We report systematic measurements of ac-susceptibility,
nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time
() on the pressure ()- induced heavy-fermion (HF) superconductor
CeRhIn. The temperature () dependence of at = 1.6 GPa has
revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist
microscopically, exhibiting the respective transition at K and
= 0.9 K. It is demonstrated that SC does not yield any trace of gap
opening in low-lying excitations below K, but K, followed by a = const law. These results point to the
unconventional characteristics of SC coexisting with AFM. We highlight that
both of the results deserve theoretical work on the gapless nature in low-lying
excitation spectrum due to the coexistence of AFM and SC and the lack of the
mean-field regime below K.Comment: 4pages,5figures,revised versio
Enhancement of Superconducting Transition Temperature Due to Antiferromagnetic Spin Fluctuations in Iron-pnictides LaFe(As_{1-x}P_x)(O_{1-y}F_y) : 31P-NMR Studies
Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1
have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low
energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a
result, Tc exhibits respective peaks at 24 K and 27 K against the
P-substitution for As. This result demonstrates that the AFMSFs are responsible
for the increase in Tc for LaFe(As_{1-x}P_x)(O_{1-y}F_y) as a primary mediator
of the Cooper pairing. From a systematic comparison of AFMSFs with a series of
(La_{1-z}Y_z)FeAsO_{\delta} compounds in which Tc reaches 50 K for z=0.95, we
remark that a moderate development of AFMSFs causes the Tc to increase up to 50
K under the condition that the local lattice parameters of FeAs tetrahedron
approaches those of the regular tetrahedron. We propose that the T_c of
Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the
AFMSFs and other factors originating from the optimization of the local
structure.Comment: 6 pages, 8 figures, Accepted for publication in Phys. Rev.
Coexistence of Superconductivity and Antiferromagnetism in Heavy-Fermion Superconductor CeCu_{2}(Si_{1-x}Ge_{x})_{2} Probed by Cu-NQR --A Test Case for the SO(5) Theory--
We report on the basis of Cu-NQR measurements that superconductivity (SC) and
antiferromagnetism (AF) coexist on a microscopic level in
CeCu_{2}(Si_{1-x}Ge_{x})_{2}, once a tiny amount of 1%Ge (x = 0.01) is
substituted for Si. This coexistence arises because Ge substitution expands the
unit-cell volume in nearly homogeneous CeCu2Si2 where the SC coexists with
slowly fluctuating magnetic waves. We propose that the underlying exotic phases
of SC and AF in either nearly homogeneous or slightly Ge substituted CeCu2Si2
are accountable based on the SO(5) theory that unifies the SC and AF. We
suggest that the mechanism of the SC and AF is common in CeCu2Si2.Comment: 7 pages with 6 figures embedded in the text. To be published in J.
Phys. Condens. Matter, 200
Orbital ordering in frustrated Jahn-Teller systems
We consider the superexchange in `frustrated' Jahn-Teller systems, such as
the transition metal oxides NaNiO_2, LiNiO_2, and ZnMn_2O_4, in which
transition metal ions with doubly degenerate orbitals form a triangular or
pyrochlore lattice and are connected by the 90-degree metal-oxygen-metal bonds.
We show that this interaction is much different from a more familiar exchange
in systems with the 180-degree bonds, e.g. perovskites. In contrast to the
strong interplay between the orbital and spin degrees of freedom in
perovskites, in the 90-degree exchange systems spins and orbitals are
decoupled: the spin exchange is much weaker than the orbital one and it is
ferromagnetic for all orbital states. Due to frustration, the mean-field
orbital ground state is strongly degenerate. Quantum orbital fluctuations
select particular ferro-orbital states, such as the one observed in NaNiO_2. We
also discuss why LiNiO_2 may still behave as an orbital liquid.Comment: 5 pages, 3 figure
Possibility of valence-fluctuation mediated superconductivity in Cd-doped CeIrIn probed by In-NQR
We report on a pressure-induced evolution of exotic superconductivity and
spin correlations in CeIr(InCd) by means of
In-Nuclear-Quadrupole-Resonance (NQR) studies. Measurements of an NQR spectrum
and nuclear-spin-lattice-relaxation rate have revealed that
antiferromagnetism induced by the Cd-doping emerges locally around Cd dopants,
but superconductivity is suddenly induced at = 0.7 and 0.9 K at 2.34 and
2.75 GPa, respectively. The unique superconducting characteristics with a large
fraction of the residual density of state at the Fermi level that increases
with differ from those for anisotropic superconductivity mediated by
antiferromagnetic correlations. By incorporating the pressure dependence of the
NQR frequency pointing to the valence change of Ce, we suggest that
unconventional superconductivity in the CeIr(InCd) system may
be mediated by valence fluctuations.Comment: Accepted for publication in Physical Review Letter
Realization of odd-frequency p-wave spin-singlet superconductivity coexisting with antiferromagnetic order near quantum critical point
A possibility of the realization of the p-wave spin-singlet superconductivity
(SS), whose gap function is odd both in momentum and in frequency, is
investigated by solving the gap equation with the phenomenological interaction
mediated by the antiferromagnetic spin fluctuation. The SS is realized
prevailing over the d-wave singlet superconductivity (SS) in the vicinity of
antiferromagnetic quantum critical pint (QCP) both on the paramagnetic and on
the antiferromagnetic sides. Off the QCP in the paramagnetic phase, however,
the SS with line-nodes is realized as \textit{conventional} anisotropic
superconductivity. For the present SS state, there is no gap in the
quasiparticle spectrum everywhere on the Fermi surface due to its odd
frequency. These features can give a qualitative understanding of the anomalous
behaviors of NQR relaxation rate on CeCuSi or CeRhIn where the
antiferromagnetism and superconductivity coexist on a microscopic level.Comment: 20 pages with 12 figures. To appear in J. Phys. Soc. Jpn. Vol. 72,
No. 1
Exotic superconductivity in the coexistent phase of antiferromagnetism and superconductivity in CeCu2(Si0.98Ge0.02)2: A Cu-NQR study under hydrostatic pressure
We report a pressure () effect on CeCu(SiGe)
where an antiferromagnetic (AFM) order at 0.75 K coexists with
superconductivity below 0.4 K\@. At pressures exceeding
GPa, the AFM order is suppressed, which demonstrates that the sudden emergence
of AFM order due to the Ge doping is ascribed to the intrinsic lattice
expansion. The exotic superconductivity at GPa is found to evolve into
a typical heavy-fermion one with a line-node gap above GPa\@. We
highlight that the anomalous enhancement in nuclear spin-lattice relaxation
rate that follows a = const. behavior well below at =
0 GPa is characterized by the persistence of low-lying magnetic excitations,
which may be inherent to the coexistent state of antiferromagnetism and
superconductivity.Comment: 5 pages with 4 figures embedded in the text. To be published in J.
Phys. Soc. Jp
Pressure-induced unconventional superconductivity in the heavy-fermion antiferromagnet CeIn3: An 115In-NQR study under pressure
We report on the pressure-induced unconventional superconductivity in the
heavy-fermion antiferromagnet CeIn3 by means of nuclear-quadrupole-resonance
(NQR) studies conducted under a high pressure. The temperature and pressure
dependences of the NQR spectra have revealed a first-order quantum-phase
transition (QPT) from an AFM to PM at a critical pressure Pc=2.46 GPa. Despite
the lack of an AFM quantum critical point in the P-T phase diagram, we
highlight the fact that the unconventional SC occurs in both phases of the AFM
and PM. The nuclear spin-lattice relaxation rate 1/T1 in the AFM phase have
provided evidence for the uniformly coexisting AFM+SC phase. In the HF-PM phase
where AFM fluctuations are not developed, 1/T1 decreases without the coherence
peak just below Tc, followed by a power-law like T dependence that indicates an
unconventional SC with a line-node gap. Remarkably, Tc has a peak around Pc in
the HF-PM phase as well as in the AFM phase. In other words, an SC dome exists
with a maximum value of Tc = 230 mK around Pc, indicating that the origin of
the pressure-induced HF SC in CeIn3 is not relevant to AFM spin fluctuations
but to the emergence of the first-order QPT in CeIn3. When the AFM critical
temperature is suppressed at the termination point of the first-order QPT, Pc =
2.46 GPa, the diverging AFM spin-density fluctuations emerge at the critical
point from the AFM to PM. The results with CeIn3 leading to a new type of
quantum criticality deserve further theoretical investigations
- …
