1,915 research outputs found

    Determination of |V_us| from hadronic tau decays

    Full text link
    The recent update of the strange spectral function and the moments of the invariant mass distribution by the OPAL collaboration from hadronic tau decay data are employed to determine |V_us| as well as m_s. Our result, |V_us|=0.2208\pm0.0034, is competitive to the standard extraction of |V_us| from K_e3 decays and to the new proposals to determine it. Furthermore, the error associated to our determination of |V_us| can be reduced in the future since it is dominated by the experimental uncertainty that will be eventually much improved by the B-factories hadronic tau data. Another improvement that can be performed is the simultaneous fit of both |V_us| and m_s to a set of moments of the hadronic tau decays invariant mass distribution, which will provide even a more accurate determination of both parameters.Comment: 6 pages. Invited talk given by E.G. at the XXXXth Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 5-12 Mar 200

    MARKETING POLITIK PARTAI DEMOKRASI INDONESIA PERJUANGAN DALAM MEMENANGKAN KURSI TERBANYAK DI PEMILIHAN LEGISLATIF 2019 DI KOTA KOTAMOBAGU

    Get PDF
    Negara Indonesia adalah Negara yang berdasarkan kedaulatan rakyat, sesuai dengan pasal 1 ayat 2 Undang-undang Dasar 1945 yang menjelaskan Kedaulatan berada ditangan rakyat dan dilaksanakan menurut Undang-Undang Dasar. Kepunyaan yang dipunyai oleh rakyat itu antara lain tercermin dengan dilaksanakannya pemilihan umum dalam waktu-waktu tertentu. Pentingnya pemilihan umum diselenggarakan secara berkala dikarenakan oleh beberapa sebab. Pertama, pendapat atau aspirasi rakyat mengenai berbagai aspek kehidupan bersama dalam masyarakat bersifat dinamis, dan berkembang dari waktu ke waktu. Ilmu marketing pun nyatanya bisa diadopsi pada berbagai macam bidang termasuk politik. Partai Demokrasi Indonesia Perjuangan (PDIP) adalah salah satu partai yang ada dalam jajaran partai politik di dalam pemilihan umum di Kota Kotamobagu tahun 2019 yang lalu. Sebagai salah satu partai politik yang mempunyai nama besar partai Demokrasi Indonesia Perjuangan (PDIP) juga mempunyai peranan dalam mengkomunikasikan politik kepada simpatisan dan masyarakat, bergerak dalam lapangan politik untuk ikut mengatur ketatanegaraan Penelitian ini bertujuan untuk Mengetahui bagaimana Marketing Partai Politik Partai Demokrasi Indonesia Perjuangan dalam Memenangkan Kursi Terbanyak di Pemelihan Legislatif 2019 di Kotamobagu .Penelitian ini menggunakan metode analisis deskriptif kualitatif,yaitu dengan mengumpulkan data langsung dari lokasi dengan melakukan observasi, wawancara sesuai subjek penelitian. Pemasaran Politik (Political Marketing) yang dilihat dari 4 P yaitu : Product, Promotion, Price, Place (Firmanzah 2008:57) Partai PDIP dalam pemilihan Calon Legislatif Kotamobagu Tahun 2019 telah dilaksanakan dengan strategi yang dilakukan diantaranya adalah : dalam hal menjaring kader/kandidat calon legislatif Kotamobagu Tahun 2019 PDIP menggunakan survey terlebih dahulu kepada masyarakat agar supaya kandidat yang didapat benar - benar merupakan kebutuhan masyarakat dan mampu membawa aspirasi konstituen.  Kata Kunci: : Marketing, Partai Politik, PDIP, Pemilihan LegislatifÂ

    Semileptonic D decay into scalar mesons: a QCD sum rule approach

    Get PDF
    Semileptonic decays of D-mesons into scalar hadronic states are investigated. Two extreme cases are considered: a) the meson decays directly into an uncorrelated scalar state of two two mesons and b) the decay proceeds via resonance formation. QCD sum rules including instanton contributions are used to calculate total and differential decay rates under the two assumptions.Comment: 18 pages, 9 figures, e-mail: [email protected]

    B and B_S decay constants from moments of Finite Energy Sum Rules in QCD

    Get PDF
    We use an appropriate combination of moments of finite energy sum rules in QCD in order to compute the B_q-meson decays constants f_B and f_{B_s}.We perform the calculation using a two-loop computation of the imaginary part of the pseudoscalar two point function in terms of the running bottom quark mass. The results are stable with the so called QCD duality threshold and they are in agreement with the estimates obtained from Borel transform QCD sum rules and lattice computations.Comment: 11 pages, 2 figure

    Determination of m_s and |V_us| from hadronic tau decays

    Get PDF
    The mass of the strange quark is determined from SU(3)-breaking effects in the tau hadronic width. Compared to previous analyses, the contributions from scalar and pseudoscalar spectral functions, which suffer from large perturbative corrections, are replaced by phenomenological parametrisations. This leads to a sizeable reduction of the uncertainties in the strange mass from tau decays. Nevertheless, the resulting m_s value is still rather sensitive to the moment of the invariant mass distribution which is used for the determination, as well as the size of the quark-mixing matrix element |V_us|. Imposing the unitarity fit for the CKM matrix, we obtain m_s(2 GeV)=117+-17 MeV, whereas for the present Particle Data Group average for |V_us|, we find m_s(2 GeV)=103+-17 MeV. On the other hand, using an average of m_s from other sources as an input, we are able to calculate the quark-mixing matrix element |V_us|, and we demonstrate that if the present measurement of the hadronic decay of the tau into strange particles is improved by a factor of two, the determination of |V_us| is more precise than the current world average.Comment: 25 pages, 1 eps figur

    K pi vector form factor constrained by tau ---> K pi nu_tau and K_l3 decays

    Full text link
    Dispersive representations of the Kpi vector and scalar form factors are used to fit the spectrum of tau ---> K pi nu_tau obtained by the Belle collaboration incorporating constraints from results for K_l3 decays. The slope and curvature of the vector form factor are obtained directly from the data through the use of a three-times-subtracted dispersion relation. We find λ+=(25.49±0.31)×103\lambda_+'=(25.49 \pm 0.31) \times 10^{-3} and λ+"=(12.22±0.14)×104\lambda_+"= (12.22 \pm 0.14) \times 10^{-4}. From the pole position on the second Riemann sheet the mass and width of the K(892)±K^*(892)^{\pm} are found to be mK(892)±=892.0±0.5m_{K^*(892)^\pm}=892.0\pm 0.5~MeV and ΓK(892)±=46.5±1.1\Gamma_{K^*(892)^\pm}=46.5\pm 1.1~MeV. The phase-space integrals needed for K_l3 decays are calculated as well. Furthermore, the Kpi isospin-1/2 P-wave threshold parameters are derived from the phase of the vector form factor. For the scattering length and the effective range we find respectively a11/2=(0.166±0.004)mπ3a_{1}^{1/2}\,= ( 0.166\pm 0.004)\,m_\pi^{-3} and b11/2=(0.258±0.009)mπ5b_{1}^{1/2}\,=( 0.258\pm 0.009)\,m_\pi^{-5}.Comment: 22 pages, 4 figure

    Up and down quark masses from Finite Energy QCD sum rules to five loops

    Full text link
    The up and down quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector divergences, to five loop order in Perturbative QCD (PQCD), and including leading non-perturbative QCD and higher order quark mass corrections. This FESR is designed to reduce considerably the systematic uncertainties arising from the (unmeasured) hadronic resonance sector, which in this framework contributes less than 3-4% to the quark mass. This is achieved by introducing an integration kernel in the form of a second degree polynomial, restricted to vanish at the peak of the two lowest lying resonances. The driving hadronic contribution is then the pion pole, with parameters well known from experiment. The determination is done in the framework of Contour Improved Perturbation Theory (CIPT), which exhibits a very good convergence, leading to a remarkably stable result in the unusually wide window s0=1.04.0GeV2s_0 = 1.0 - 4.0 {GeV}^2, where s0s_0 is the radius of the integration contour in the complex energy (squared) plane. The results are: mu(Q=2GeV)=2.9±0.2m_u(Q= 2 {GeV}) = 2.9 \pm 0.2 MeV, md(Q=2GeV)=5.3±0.4m_d(Q= 2 {GeV}) = 5.3 \pm 0.4 MeV, and (mu+md)/2=4.1±0.2(m_u + m_d)/2 = 4.1 \pm 0.2 Mev (at a scale Q=2 GeV).Comment: Additional references to lattice QCD results have been adde

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Dispersion relations and soft pion theorems for K -> pi pi

    Get PDF
    We propose a new method to obtain the K -> pi pi amplitude from K -> pi which allows one to fully account for the effects of final state interactions. The method is based on a set of dispersion relations for the K -> pi pi amplitude in which the weak Hamiltonian carries momentum. The soft pion theorem, which relates this amplitude to the K -> pi amplitude, can be used to determine one of the two subtraction constants - the second constant is at present known only to leading order in chiral perturbation theory. We solve the dispersion relations numerically and express the result in terms of the unknown higher order corrections to this subtraction constant.Comment: Latex, 10 pages, 1 figure. Typo in eqs. (13,14) corrected, some rephrasing in the introductio
    corecore