1,517 research outputs found

    Analytical investigation of turbine erosion phenomena. Volume III - Effect of external variables on the erosion property of materials Interim technical report

    Get PDF
    Effect of external variables on erosion rates of turbine blade materials under impacting liquid drops and chemical dissolution of flowing liqui

    Tc-99m-NTP 15-5 assessment of the early therapeutic response of chondrosarcoma to zoledronic acid in the Swarm rat orthotopic model

    Get PDF
    Background: Since proteoglycans (PGs) appear as key partners in chondrosarcoma biology, PG-targeted imaging using the radiotracer 99mTc-N-(triethylammonium)-3-propyl-[15]ane-N5 (99mTc-NTP 15-5) developed by our group was previously demonstrated to be a good single-photon emission computed tomography tracer for cartilage neoplasms. We therefore initiated this new preclinical study to evaluate the relevance of 99mTc-NTP 15-5 imaging for the in vivo monitoring and quantitative assessment of chondrosarcoma response to zoledronic acid (ZOL) in the Swarm rat orthotopic model. Findings: Rats bearing chondrosarcoma in the orthotopic paratibial location were treated by ZOL (100 ÎŒg/kg, subcutaneously) or phosphate-buffered saline, twice a week, from day 4 to day 48 post-tumor implantation. 99mTc-NTP 15-5 imaging was performed at regular intervals with the target-to-background ratio (TBR) determined. Tumor volume was monitored using a calliper, and histology was performed at the end of the study. From day 11 to day 48, mean TBR values ranged from 1.7 ± 0.6 to 2.3 ± 0.6 in ZOL-treated rats and from 2.1 ± 1.0 to 4.9 ± 0.9 in controls. Tumor growth inhibition was evidenced using a calliper from day 24 and associated to a decrease in PG content in treated tumor tissues (confirmed by histology). Conclusions: This work demonstrated two proofs of concept: (1) biphosphonate therapy could be a promising therapeutic approach for chondrosarcoma; (2) 99mTc-NTP 15-5 is expected to offer a novel imaging modality for the in vivo evaluation of the extracellular matrix features of chondrosarcoma, which could be useful for the follow-up and quantitative assessment of proteoglycan ‘downregulation’ associated to the response to therapeutic attempts

    Roles of inflammatory cell infiltrate in periprosthetic osteolysis

    Get PDF
    Classically, particle-induced periprosthetic osteolysis at the implant–bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP− multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants

    L-MTP-PE and zoledronic acid combination in osteosarcoma: pre-clinical evidence of positive therapeutic combination for clinical transfer

    Get PDF
    Osteosarcoma, the most frequent malignant primary bone tumor in pediatric patients is characterized by osteolysis promoting tumor growth. Lung metastasis is the major bad prognosis factor of this disease. Zoledronic Acid (ZA), a potent inhibitor of bone resorption is currently evaluated in phase III randomized studies in Europe for the treatment of osteosarcoma and Ewing sarcoma. The beneicial effect of the liposomal form of Muramyl-TriPeptide-Phosphatidyl Ethanolamine (L-mifamurtide, MEPACTŸ), an activator of macrophage populations has been demonstrated to eradicate lung metastatic foci in osteosarcoma. The objective of this study was to evaluate the potential therapeutic beneit and the safety of the ZA and L-mifamurtide combination in preclinical models of osteosarcoma, as a prerequisite before translation to patients. The effects of ZA (100 ”g/kg) and L-mifamurtide (1 mg/kg) were investigated in vivo in xenogeneic and syngeneic mice models of osteosarcoma, at clinical (tumor proliferation, spontaneous lung metastases development), radiological (bone microarchitecture by microCT analysis), biological and histological levels. No interference between the two drugs could be observed on ZA-induced bone protection and on L-mifamurtide-induced inhibition of lung metastasis development. Unexpectedly, ZA and L-mifamurtide association induced an additional and in some cases synergistic inhibition of primary tumor progression. L-mifamurtide has no effect on tumor proliferation in vitro or in vivo, and macrophage population was not affected at the tumor site whatever the treatment. This study evidenced for the irst time a signiicant inhibition of primary osteosarcoma progression when both drugs are combined. This result constitutes a irst proof-of-principle for clinical application in osteosarcoma patients

    Biological evidence of cancer stem-like cells and recurrent disease in osteosarcoma

    Get PDF
    Sarcomas are a large family of cancers originating in the mesenchyme. Composed of more than 100 histological subtypes, soft tissue and bone sarcomas remain clinically challenging, particularly in children and adolescents in whom sarcomas are the second most common malignant entities. Osteosarcoma is the main primary bone tumor in adolescents and young adults and is characterized by a high propensity to induce distant metastatic foci and become multi-drug resistant. The innate and acquired resistance of osteosarcoma can be explained by high histological heterogeneity and genetic/molecular diversity. In the last decade, the notion of cancer stem-like cells (CSCs) has emerged. This subset of cancer cells has been linked to drug resistance properties, recurrence of the disease, and therapeutic failure. Although CSCs remain controversial, many elements are in favor of them playing a role in the development of the drug resistance profile. The present review gives a brief overview of the most recent biological evidence of the presence of CSCs in osteosarcomas and their role in the drug resistance profile of these rare oncological entities. Their use as promising therapeutic targets is discussed

    Inhibiting endothelin receptors with macitentan strengthens the bone protective action of RANKL inhibition and reduces metastatic dissemination in osteosarcoma

    Get PDF
    Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient’s lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors

    Technical report: liquid overlay technique allows the generation of homogeneous osteosarcoma, glioblastoma, lung and prostate adenocarcinoma spheroids that can be used for drug cytotoxicity measurements

    Get PDF
    Introduction: The mechanisms involved in cancer initiation, progression, drug resistance, and disease recurrence are traditionally investigated through in vitro adherent monolayer (2D) cell models. However, solid malignant tumor growth is characterized by progression in three dimensions (3D), and an increasing amount of evidence suggests that 3D culture models, such as spheroids, are suitable for mimicking cancer development. The aim of this report was to reaffirm the relevance of simpler 3D culture methods to produce highly reproducible spheroids, especially in the context of drug cytotoxicity measurements. Methods: Human A549 lung adenocarcinoma, LnCaP prostate adenocarcinoma, MNNG/HOS osteosarcoma and U251 glioblastoma cell lines were grown into spheroids for 20 days using either Liquid Overlay Technique (LOT) or Hanging Drop (HD) in various culture plates. Their morphology was examined by microscopy. Sensitivity to doxorubicin was compared between MNNG/HOS cells grown in 2D and 3D. Results: For all cell lines studied, the morphology of spheroids generated in round-bottom multiwell plates was more repeatable than that of those generated in flat-bottom multiwell plates. HD had no significant advantage over LOT when the spheroids were cultured in round-bottom plates. Finally, the IC50 of doxorubicin on MNNG/HOS cultured in 3D was 18.8 times higher than in 2D cultures (3D IC50 = 15.07 ± 0.3 ”M; 2D IC50 = 0.8 ± 0.4 ”M; *p < 0.05). Discussion: In conclusion, we propose that the LOT method, despite and because of its simplicity, is a relevant 3D model for drug response measurements that could be scaled up for high throughput screening

    Advances in osteosarcoma

    Get PDF
    Purpose of Review This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. Recent Findings Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. Summary The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials

    International Health Regulations—What Gets Measured Gets Done

    Get PDF
    Focus on goals and metrics for 4 core capacities illustrates 1 approach to implementing IHR

    The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO₂ and CH₄ retrieval algorithm products with measurements from the TCCON

    Get PDF
    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO₂, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4–2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH₄, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH₄ precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively
    • 

    corecore