904 research outputs found
Non-perturbative theoretical description of two atoms in an optical lattice with time-dependent perturbations
A theoretical approach for a non-perturbative dynamical description of two
interacting atoms in an optical lattice potential is introduced. The approach
builds upon the stationary eigenstates found by a procedure described in
Grishkevich et al. [Phys. Rev. A 84, 062710 (2011)]. It allows presently to
treat any time-dependent external perturbation of the lattice potential up to
quadratic order. Example calculations of the experimentally relevant cases of
an acceleration of the lattice and the turning-on of an additional harmonic
confinement are presented.Comment: 8 pages, 6 figure
CD8β knockout mice mount normal anti-viral CD8+ T cell responses—but why?
It has been shown previously that CD8β in vitro increases the range and the sensitivity of antigen recognition and in vivo plays an important role in the thymic selection of CD8+ T cells. Consistent with this, we report here that CD8+ T cells from CD8β knockout (KO) P14 TCR transgenic mice proliferate inefficiently in vitro. In contrast to these findings, we also show that CD8β KO mice mount normal CD8 primary, secondary and memory responses to acute infection with lymphocytic choriomeningitis virus. Tetramer staining and cytotoxic experiments revealed a predominance of CD8-independent CTL in CD8β KO mice. The TCR repertoire, especially the one of the TCRα chain, was different in CD8β KO mice as compared with B6 mice. Our results indicate that in the absence of CD8β, CD8-independent TCRs are preferentially selected, which in vivo effectively compensates for the reduced co-receptor function of CD8α
Pengembangan Model Integrasi Kano-QFD Untuk Mengoptimalkan Kepuasan Konsumen Dengan Mempertimbangkan Keterbatasan Dana Pengembangan
. This study develops a model of integration between the application of the concept of Kano in QFD framework and considering the use of product development costs. Kano concept would classify the product attributes into 5 categories: reverse, indifference, one-dimensional, must-be, dan attractive. These attributes are given different weights based on the influence of these attributes on the level of consumer satisfaction. Furthermore, the allocation process of product development by taking into account the contribution of the cost of each technical response. The result of the integration is allocate development funds for must-be attributes and do not allocate to the reverse and indifference attributes. Thus, companies avoid the development of product attributes indifference and reverse that does not give effect to increasing customer satisfaction so that it saves development costs. The results of this model are all the technical response both in the category of must-be, one-dimensional and attractive product development funds be allocated with total costs of 353,30
Training, Retention, and Transfer of Data Entry Perceptual and Motoric Processes Over Long Retention Intervals
Subjects trained in a standard data entry task, which involved typing numbers (e.g., 5421) using their right hands. At test (6 months post-training), subjects completed the standard task, followed by a left-hand variant (typing with their left hands) that involved the same perceptual, but different motoric, processes as the standard task. At a second test (8 months post-training), subjects completed the standard task, followed by a code variant (translating letters into digits, then typing the digits with their right hands) that involved different perceptual, but the same motoric, processes as the standard task. For each of the three tasks, half the trials were trained numbers (old) and half were new. Repetition priming (faster response times to old than new numbers) was found for each task. Repetition priming for the standard task reflects retention of trained numbers; for the left-hand variant reflects transfer of perceptual processes; and for the code variant reflects transfer of motoric processes. There was thus evidence for both specificity and generalizability of training data entry perceptual and motoric processes over very long retention intervals
A novel HLA-B18 restricted CD8+ T cell epitope is efficiently cross-presented by dendritic cells from soluble tumor antigen
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8<sup>+</sup>T cell epitope, NY-ESO-1<sub>88–96</sub> (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1<sub>157–165</sub> epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1<sub>88–96</sub> is much more efficiently cross-presented from the soluble form, than NY-ESO-1<sub>157–165</sub>. On the other hand, NY-ESO-1<sub>157–165</sub> is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A<sub>26–35</sub>; whereas NY-ESO-1<sub>88–96</sub> was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1<sub>88–96</sub> is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1<sub>88–96</sub> from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8<sup>+</sup>T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed
An Atom Laser with a cw Output Coupler
We demonstrate a continuous output coupler for magnetically trapped atoms.
Over a period of up to 100 ms a collimated and monoenergetic beam of atoms is
continuously extracted from a Bose- Einstein condensate. The intensity and
kinetic energy of the output beam of this atom laser are controlled by a weak
rf-field that induces spin flips between trapped and untrapped states.
Furthermore, the output coupler is used to perform a spectroscopic measurement
of the condensate, which reveals the spatial distribution of the magnetically
trapped condensate and allows manipulation of the condensate on a micrometer
scale.Comment: 4 pages, 4 figure
Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms
We report on precision measurements of spin-dependent interaction-strengths
in the 87Rb spin-1 and spin-2 hyperfine ground states. Our method is based on
the recent observation of coherence in the collisionally driven spin-dynamics
of ultracold atom pairs trapped in optical lattices. Analysis of the Rabi-type
oscillations between two spin states of an atom pair allows a direct
determination of the coupling parameters in the interaction hamiltonian. We
deduce differences in scattering lengths from our data that can directly be
compared to theoretical predictions in order to test interatomic potentials.
Our measurements agree with the predictions within 20%. The knowledge of these
coupling parameters allows one to determine the nature of the magnetic ground
state. Our data imply a ferromagnetic ground state for 87Rb in the f=1
manifold, in agreement with earlier experiments performed without the optical
lattice. For 87Rb in the f=2 manifold the data points towards an
antiferromagnetic ground state, however our error bars do not exclude a
possible cyclic phase.Comment: 11 pages, 5 figure
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
The reliable detection of single quantum particles has revolutionized the
field of quantum optics and quantum information processing. For several years,
researchers have aspired to extend such detection possibilities to larger scale
strongly correlated quantum systems, in order to record in-situ images of a
quantum fluid in which each underlying quantum particle is detected. Here we
report on fluorescence imaging of strongly interacting bosonic Mott insulators
in an optical lattice with single-atom and single-site resolution. From our
images, we fully reconstruct the atom distribution on the lattice and identify
individual excitations with high fidelity. A comparison of the radial density
and variance distributions with theory provides a precise in-situ temperature
and entropy measurement from single images. We observe Mott-insulating plateaus
with near zero entropy and clearly resolve the high entropy rings separating
them although their width is of the order of only a single lattice site.
Furthermore, we show how a Mott insulator melts for increasing temperatures due
to a proliferation of local defects. Our experiments open a new avenue for the
manipulation and analysis of strongly interacting quantum gases on a lattice,
as well as for quantum information processing with ultracold atoms. Using the
high spatial resolution, it is now possible to directly address individual
lattice sites. One could, e.g., introduce local perturbations or access regions
of high entropy, a crucial requirement for the implementation of novel cooling
schemes for atoms on a lattice
- …
