111 research outputs found

    Both resistance- and endurance-type exercise reduce the prevalence of hyperglycaemia in individuals with impaired glucose tolerance and in insulin-treated and non-insulin-treated type 2 diabetic patients

    Get PDF
    Aims/hypothesis The present study compares the impact of endurance- vs resistance-type exercise on subsequent 24 h blood glucose homeostasis in individuals with impaired glucose tolerance (IGT) and type 2 diabetes. Methods Fifteen individuals with IGT, 15 type 2 diabetic patients treated with exogenous insulin (INS), and 15 type 2 diabetic patients treated with oral glucose-lowering medication (OGLM) participated in a randomised crossover experiment. Participants were studied on three occasions for 3 days under strict dietary standardisation, but otherwise free-living conditions. Blood glucose homeostasis was assessed by ambulatory continuous glucose monitoring over the 24 h period following a 45 min session of resistance-type exercise (75% one repetition maximum), endurance-type exercise (50% maximum workload capacity) or no exercise at all. Results Average 24 h blood glucose concentrations were reduced from 7.4±0.2, 9.6±0.5 and 9.2±0.7 mmol/l during the control experiment to 6.9±0.2, 8.6±0.4 and 8.1±0.5 mmol/l (resistance-type exercise) and 6.8±0.2, 8.6±0.5 and 8.5±0.5 mmol/l (endurance-type exercise) over the 24 h period following a single bout of exercise in the IGT, OGLM and INS groups, respectively (p 10 mmol/l) was reduced by 35±7 and 33±11% over the 24 h period following a single session of resistanceand endurance-type exercise, respectively (p< 0.001 for both treatments). Conclusions/interpretation A single session of resistanceor endurance-type exercise substantially reduces the prevalence of hyperglycaemia during the subsequent 24 h period in individuals with IGT, and in insulin-treated and non-insulin-treated type 2 diabetic patients. Both resistance- and endurance-type exercise can be integrated in exercise intervention programmes designed to improve glycaemic control. Trial registration: Clinicaltrials.gov NCT00945165 Funding: The Netherlands Organization for Health Research and Development (ZonMw, the Netherlands). © 2011 The Author(s)

    Reasons and predictors of discontinuation of running after a running program for novice runners

    Get PDF
    Objectives: To determine the proportion of participants of a running program for novice runners that discontinued running and investigate the main reasons to discontinue and characteristics associated with discontinuation. Design: Prospective cohort study. Methods: The study included 774 participants of Start to Run, a 6-week running program for novice runners. Before the start of the program, participants filled-in a baseline questionnaire to collect information on demographics, physical activity and perceived health. The 26-weeks follow-up questionnaire was used to obtain information on the continuation of running (yes/no) and main reasons for discontinuation. To determine predictors for discontinuation of running, multivariable logistic regression was performed. Results: Within 26 weeks after the start of the 6-week running program, 29.5% of the novice runners (n = 225) had stopped running. The main reason for discontinuation was a running-related injury (n = 108, 48%). Being female (OR 1.74; 95% CI 1.13–2.68), being unsure about the continuation of running after the program (OR 2.06; 95% CI 1.31–3.24) and (almost) no alcohol use (OR 1.62; 95%CI 1.11–2.37) were associated with a higher chance of discontinuation of running. Previous running experience less than one year previously (OR 0.46; 95% CI 0.26–0.83) and a higher score on the RAND-36 subscale physical functioning (OR 0.98; 95% CI 0.96–0.99) were associated with a lower chance of discontinuation. Conclusions: In this group of novice runners, almost one-third stopped running within six months. A running-related injury was the main reason to stop running. Women with a low perceived physical functioning and without running experience were prone to discontinue running

    Women’s self-rated attraction to male faces does not correspond with physiological arousal

    Get PDF
    Data Availability Statement: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.Peer reviewedPublisher PD

    High-Dose Testosterone Propionate Treatment Reverses the Effects of Endurance Training on Myocardial Antioxidant Defenses in Adolescent Male Rats

    Get PDF
    This study was aimed at evaluation of changes in activities of selected antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) and contents of key nonenzymatic antioxidants (glutathione, protein thiol groups, and α- and γ-tocopherols) in the left heart ventricle of young male Wistar rats subjected to endurance training (treadmill running, 1 h daily, 5 days a week, for 6 weeks) or/and testosterone propionate treatment (8 or 80 mg/kg body weight, intramuscularly, once a week, for 6 weeks) during adolescence. The training alone increased the activities of key antioxidant enzymes, but lowered the pool of nonenzymatic antioxidants and enhanced myocardial oxidative stress as evidenced by elevation of the lipid peroxidation biomarker malondialdehyde. The lower-dose testosterone treatment showed mixed effects on the individual components of the antioxidant defense system, but markedly enhanced lipid peroxidation. The higher-dose testosterone treatment decreased the activities of the antioxidant enzymes, lowered the contents of the nonenzymatic antioxidants, except for that of γ-tocopherol, reversed the effect of endurance training on the antioxidant enzymes activities, and enhanced lipid peroxidation more than the lower-dose treatment. These data demonstrate the potential risk to cardiac health from exogenous androgen use, either alone or in combination with endurance training, in adolescents

    Current anti-doping policy: a critical appraisal

    Get PDF
    BACKGROUND: Current anti-doping in competitive sports is advocated for reasons of fair-play and concern for the athlete's health. With the inception of the World Anti Doping Agency (WADA), anti-doping effort has been considerably intensified. Resources invested in anti-doping are rising steeply and increasingly involve public funding. Most of the effort concerns elite athletes with much less impact on amateur sports and the general public. DISCUSSION: We review this recent development of increasingly severe anti-doping control measures and find them based on questionable ethical grounds. The ethical foundation of the war on doping consists of largely unsubstantiated assumptions about fairness in sports and the concept of a "level playing field". Moreover, it relies on dubious claims about the protection of an athlete's health and the value of the essentialist view that sports achievements reflect natural capacities. In addition, costly antidoping efforts in elite competitive sports concern only a small fraction of the population. From a public health perspective this is problematic since the high prevalence of uncontrolled, medically unsupervised doping practiced in amateur sports and doping-like behaviour in the general population (substance use for performance enhancement outside sport) exposes greater numbers of people to potential harm. In addition, anti-doping has pushed doping and doping-like behaviour underground, thus fostering dangerous practices such as sharing needles for injection. Finally, we argue that the involvement of the medical profession in doping and anti-doping challenges the principles of non-maleficience and of privacy protection. As such, current anti-doping measures potentially introduce problems of greater impact than are solved, and place physicians working with athletes or in anti-doping settings in an ethically difficult position. In response, we argue on behalf of enhancement practices in sports within a framework of medical supervision. SUMMARY: Current anti-doping strategy is aimed at eradication of doping in elite sports by means of all-out repression, buttressed by a war-like ideology similar to the public discourse sustaining international efforts against illicit drugs. Rather than striving for eradication of doping in sports, which appears to be an unattainable goal, a more pragmatic approach aimed at controlled use and harm reduction may be a viable alternative to cope with doping and doping-like behaviour

    Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2

    Get PDF
    The muscle-specific RING finger proteins MuRF1 and MuRF2 have been proposed to regulate protein degradation and gene expression in muscle tissues. We have tested the in vivo roles of MuRF1 and MuRF2 for muscle metabolism by using knockout (KO) mouse models. Single MuRF1 and MuRF2 KO mice are healthy and have normal muscles. Double knockout (dKO) mice obtained by the inactivation of all four MuRF1 and MuRF2 alleles developed extreme cardiac and milder skeletal muscle hypertrophy. Muscle hypertrophy in dKO mice was maintained throughout the murine life span and was associated with chronically activated muscle protein synthesis. During ageing (months 4–18), skeletal muscle mass remained stable, whereas body fat content did not increase in dKO mice as compared with wild-type controls. Other catabolic factors such as MAFbox/atrogin1 were expressed at normal levels and did not respond to or prevent muscle hypertrophy in dKO mice. Thus, combined inhibition of MuRF1/MuRF2 could provide a potent strategy to stimulate striated muscles anabolically and to protect muscles from sarcopenia during ageing

    Effects of androgenic-anabolic steroids in athletes

    No full text
    Androgenic-anabolic steroids (AAS) are synthetic derivatives of the male hormone testosterone. They can exert strong effects on the human body that may be beneficial for athletic performance. A review of the literature revealed that most laboratory studies did not investigate the actual doses of AAS currently abused in the field. Therefore, those studies may not reflect the actual (adverse) effects of steroids. The available scientific literature describes that short-term administration of these drugs by athletes can increase strength and bodyweight. Strength gains of about 5-20% of the initial strength and increments of 2-5 kg bodyweight, that may be attributed to an increase of the lean body mass, have been observed. A reduction of fat mass does not seem to occur. Although AAS administration may affect erythropoiesis and blood haemoglobin concentrations, no effect on endurance performance was observed. Little data about the effects of AAS on metabolic responses during exercise training and recovery are available and, therefore, do not allow firm conclusions. The main untoward effects of short- and long-term AAS abuse that male athletes most often self-report are an increase in sexual drive, the occurrence of acne vulgaris, increased body hair and increment of aggressive behaviour. AAS administration will disturb the regular endogenous production of testosterone and gonadotrophins that may persist for months after drug withdrawal. Cardiovascular risk factors may undergo deleterious alterations, including elevation of blood pressure and depression of serum high-density lipoprotein (HDL)-, HDL2- and HDL3-cholesterol levels. In echocardiographic studies in male athletes, AAS did not seem to affect cardiac structure and function, although in animal studies these drugs have been observed to exert hazardous effects on heart structure and function. In studies of athletes, AAS were not found to damage the liver. Psyche and behaviour seem to be strongly affected by AAS. Generally, AAS seem to induce increments of aggression and hostility. Mood disturbances (e.g. depression, [hypo-]mania, psychotic features) are likely to be dose and drug dependent. AAS dependence or withdrawal effects (such as depression) seem to occur only in a small number of AAS users. Dissatisfaction with the body and low self-esteem may lead to the so-called 'reverse anorexia syndrome' that predisposes to the start of AAS use. Many other adverse effects have been associated with AAS misuse, including disturbance of endocrine and immune function, alterations of sebaceous system and skin, changes of haemostatic system and urogenital tract. One has to keep in mind that the scientific data may underestimate the actual untoward effects because of the relatively low doses administered in those studies, since they do not approximate doses used by illicit steroid users. The mechanism of action of AAS may differ between compounds because of variations in the steroid molecule and affinity to androgen receptors. Several pathways of action have been recognised. The enzyme 5-alpha-reductase seems to play an important role by converting AAS into dihydrotestosterone (androstanolone) that acts in the cell nucleus of target organs, such as male accessory glands, skin and prostate. Other mechanisms comprises mediation by the enzyme aromatase that converts AAS in female sex hormones (estradiol and estrone), antagonistic action to estrogens and a competitive antagonism to the glucocorticoid receptors. Furthermore, AAS stimulate erythropoietin synthesis and red cell production as well as bone formation but counteract bone breakdown. The effects on the cardiovascular system are proposed to be mediated by the occurrence of AAS-induced atherosclerosis (due to unfavourable influence on serum lipids and lipoproteins), thrombosis, vasospasm or direct injury to vessel walls, or may be ascribed to a combination of the different mechanisms. AAS-induced increment of muscle tissue can be attributed to hypertrophy and the formation of new muscle fibres, in which key roles are played by satellite cell number and ultrastructure, androgen receptors and myonuclei
    corecore