32 research outputs found

    Splicing Reporter Mice Revealed the Evolutionally Conserved Switching Mechanism of Tissue-Specific Alternative Exon Selection

    Get PDF
    Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of “splice code”. So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this “balance” model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2) gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the “switch-like” mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved “splice code,” in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions

    Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules

    Get PDF
    SummaryMost human genes produce multiple splicing isoforms with distinct functions. To systematically understand splicing regulation, we conducted an unbiased screen and identified >100 intronic splicing enhancers (ISEs) that were clustered by sequence similarity into six groups. All ISEs functioned in another cell type and heterologous introns, and their distribution and conservation patterns in different pre-mRNA regions are similar to exonic splicing silencers. Consistently all ISEs inhibited use of splice sites from exonic locations. The putative trans-factors of each ISE group were identified and validated. Five distinct ISE motifs were recognized by hnRNP H and F whose C-terminal domains were sufficient to render context-dependent activities of ISEs. The sixth group was controlled by factors that either activate or suppress splicing. This work provided a comprehensive picture of general ISE activities and provided new models of how a single element can function oppositely depending on its locations and binding factors

    Fas-activated serine/threonine phosphoprotein (FAST) is a regulator of alternative splicing

    No full text
    Fas-activated serine/threonine phosphoprotein (FAST) is a survival protein that is tethered to the outer mitochondrial membrane. In cells subjected to environmental stress, FAST moves to stress granules, where it interacts with TIA1 to modulate the process of stress-induced translational silencing. Both FAST and TIA1 are also found in the nucleus, where TIA1 promotes the inclusion of exons flanked by weak splice recognition sites such as exon IIIb of the fibroblast growth factor receptor 2 (FGFR2) mRNA. Two-hybrid interaction screens and biochemical analysis reveal that FAST binds to several alternative and constitutive splicing regulators, suggesting that FAST might participate in this process. The finding that FAST is concentrated at nuclear speckles also supports this contention. We show that FAST, like TIA1, promotes the inclusion of exon IIIb of the FGFR2 mRNA. Both FAST and TIA1 target a U-rich intronic sequence (IAS1) adjacent the 5′ splice site of exon IIIb. However, unlike TIA1, FAST does not bind to the IAS1 sequence. Surprisingly, knockdown experiments reveal that FAST and TIA1 act independently of one another to promote the inclusion of exon IIIb. Mutational analysis reveals that FAST-mediated alternative splicing is separable from the survival effects of FAST. Our data reveal that nuclear FAST can regulate the splicing of FGFR2 transcripts

    HnRNP L represses exon splicing via a regulated exonic splicing silencer

    No full text
    Skipping of mammalian exons during pre-mRNA splicing is commonly mediated by the activity of exonic splicing silencers (ESSs). We have recently identified a regulated ESS within variable exon 4 of the CD45 gene, named ESS1, that is necessary and sufficient for partial exon repression in resting T cells and has additional silencing activity upon T-cell activation. In this study, we identify three heterogeneous nuclear ribonucleoproteins (hnRNPs) that bind specifically to ESS1. The binding of one of these proteins, hnRNP-L, is significantly decreased by mutations that disrupt both the basal and induced activities of ESS1. Recombinant hnRNP-L functions to repress exon inclusion in vitro in an ESS1-dependent manner. Moreover, depletion of hnRNP-L, either in vitro or in vivo, leads to increased exon inclusion. In contrast, the other ESS1-binding proteins, PTB and hnRNP E2, do not discriminate between wild-type and mutant ESS1 in binding studies, and do not specifically alter ESS1-dependent splicing in vitro. Together, these studies demonstrate that hnRNP-L is the primary protein through which CD45 exon 4 silencing is mediated by the regulatory sequence ESS1

    Multiscale Modeling of Alternative Splicing Regulation

    No full text
    Alternative splicing is a key process in post-transcriptional regulation, by which several kinds of mature RNA can be obtained from the same premessenger RNA. Using a constraint programming approach, we model the alternative splicing regulation at dierent scales (single site vs. multiple sites), thus exploiting dierent types of available experimental data

    Engineering splicing factors with designed specificities

    No full text
    Alternative splicing is generally regulated by trans-acting factors that specifically bind pre-mRNA to activate or inhibit the splicing reaction. This regulation is critical for normal gene expression, and dysregulation of splicing is closely associated with human diseases. Here we engineer artificial splicing factors by combining sequence-specific RNA-binding domains of human Pumilio1 with functional domains that regulate splicing. We applied these factors to modulate different types of alternative splicing in selected targets, examine the activity of effector domains from natural splicing factors, and modulate splicing of an endogenous gene, Bcl-x, an anti-cancer target. The designer factor targeted to Bcl-x increased the pro-apoptotic Bcl-xS splicing isoform, thus promoting apoptosis and increasing chemosensitivity of cancer cells to common anti-tumor drugs. Our approach permits the creation of artificial factors to target virtually any pre-mRNA, providing a new strategy to study splicing regulation and manipulate disease-associated splicing events

    Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts

    No full text
    The multiplicity of proteins compared with genes in mammals owes much to alternative splicing. Splicing signals are so subtle and complex that small perturbations may allow the production of new mRNA variants. However, the flexibility of splicing can also be a liability, and several genetic diseases result from single-base changes that cause exons to be skipped during splicing. Conventional oligonucleotide strategies can block reactions but cannot restore splicing. We describe here a method by which the use of a defective exon was restored. Spinal muscular atrophy (SMA) results from mutations of the Survival Motor Neuron (SMN) gene. Mutations of SMN1 cause SMA, whereas SMN2 acts as a modifying gene. The two genes undergo alternative splicing with SMN1, producing an abundance of full-length mRNA transcripts, whereas SMN2 predominantly produces exon 7-deleted transcripts. This discrepancy is because of a single nucleotide difference in SMN2 exon 7, which disrupts an exonic splicing enhancer containing an SF2/ASF binding site. We have designed oligoribonucleotides that are complementary to exon 7 and contain exonic splicing enhancer motifs to provide trans-acting enhancers. These tailed oligoribonucleotides increased SMN2 exon 7 splicing in vitro and rescued the incorporation of SMN2 exon 7 in SMA patient fibroblasts. This treatment also resulted in the partial restoration of gems, intranuclear structures containing SMN protein that are severely reduced in patients with SMA. The use of tailed antisense oligonucleotides to recruit positively acting factors to stimulate a splicing reaction may have therapeutic applications for genetic disorders, such as SMA, in which splicing patterns are altered
    corecore