1,961 research outputs found

    Geometric phases, gauge symmetries and ray representation

    Get PDF
    The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eiα(t)ψ(t,x)}\{e^{i\alpha(t)}\psi(t,\vec{x})\} which is not a symmetry of the Schr\"{o}dinger equation. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge symmetry, which arises from the arbitrariness of the choice of coordinates in the functional space, is then proposed as a basic gauge symmetry in the non-adiabatic phase. This re-formulation reproduces all the successful aspects of the non-adiabatic phase in a manner manifestly consistent with the conventional notion of rays and the superposition principle. The hidden local symmetry is thus identified as the natural origin of the gauge symmetry in both of the adiabatic and non-adiabatic phases in the absence of gauge fields, and it allows a unified treatment of all the geometric phases. The non-adiabatic phase may well be regarded as a special case of the adiabatic phase in this re-formulation, contrary to the customary understanding of the adiabatic phase as a special case of the non-adiabatic phase. Some explicit examples of geometric phases are discussed to illustrate this re-formulation.Comment: 30 pages. Some clarifying sentences have been added in abstract and in the body of the paper. A new additional reference and some typos have been corrected. To appear in Int. J. Mod. Phys.

    A Perturbative Study of a General Class of Lattice Dirac Operators

    Full text link
    A perturbative study of a general class of lattice Dirac operators is reported, which is based on an algebraic realization of the Ginsparg-Wilson relation in the form γ5(γ5D)+(γ5D)γ5=2a2k+1(γ5D)2k+2\gamma_{5}(\gamma_{5}D)+(\gamma_{5}D)\gamma_{5} = 2a^{2k+1}(\gamma_{5}D)^{2k+2} where kk stands for a non-negative integer. The choice k=0k=0 corresponds to the commonly discussed Ginsparg-Wilson relation and thus to the overlap operator. We study one-loop fermion contributions to the self-energy of the gauge field, which are related to the fermion contributions to the one-loop β\beta function and to the Weyl anomaly. We first explicitly demonstrate that the Ward identity is satisfied by the self-energy tensor. By performing careful analyses, we then obtain the correct self-energy tensor free of infra-red divergences, as a general consideration of the Weyl anomaly indicates. This demonstrates that our general operators give correct chiral and Weyl anomalies. In general, however, the Wilsonian effective action, which is supposed to be free of infra-red complications, is expected to be essential in the analyses of our general class of Dirac operators for dynamical gauge field.Comment: 30 pages. Some of the misprints were corrected. Phys. Rev. D (in press

    Domain wall fermion and CP symmetry breaking

    Get PDF
    We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables qq and qˉ\bar q together with Pauli-Villars fields QQ and Qˉ\bar Q are utilized. It is shown that this domain wall representation in the infinite flavor limit N=N=\infty is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing aa. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.Comment: 33 pages. Note added and a new reference were added. Phys. Rev.D (in press

    Phase Operator for the Photon Field and an Index Theorem

    Get PDF
    An index relation dim ker aadim ker aa=1dim\ ker\ a^{\dagger}a - dim\ ker\ aa^{\dagger} = 1 is satisfied by the creation and annihilation operators aa^{\dagger} and aa of a harmonic oscillator. A hermitian phase operator, which inevitably leads to dim ker aadim ker aa=0dim\ ker\ a^{\dagger}a - dim\ ker\ aa^{\dagger} = 0, cannot be consistently defined. If one considers an s+1s+1 dimensional truncated theory, a hermitian phase operator of Pegg and Barnett which carries a vanishing index can be defined. However, for arbitrarily large ss, we show that the vanishing index of the hermitian phase operator of Pegg and Barnett causes a substantial deviation from minimum uncertainty in a characteristically quantum domain with small average photon numbers. We also mention an interesting analogy between the present problem and the chiral anomaly in gauge theory which is related to the Atiyah-Singer index theorem. It is suggested that the phase operator problem related to the above analytic index may be regarded as a new class of quantum anomaly. From an anomaly view point ,it is not surprising that the phase operator of Susskind and Glogower, which carries a unit index, leads to an anomalous identity and an anomalous commutator.Comment: 32 pages, Late

    Fluctuation-dissipation theorem and quantum tunneling with dissipation at finite temperature

    Get PDF
    A reformulation of the fluctuation-dissipation theorem of Callen and Welton is presented in such a manner that the basic idea of Feynman-Vernon and Caldeira -Leggett of using an infinite number of oscillators to simulate the dissipative medium is realized manifestly without actually introducing oscillators. If one assumes the existence of a well defined dissipative coefficient R(ω)R(\omega) which little depends on the temperature in the energy region we are interested in, the spontanous and induced emissions as well as induced absorption of these effective oscillators with correct Bose distribution automatically appears. Combined with a dispersion relation, we reproduce the tunneling formula in the presence of dissipation at finite temperature without referring to an explicit model Lagrangian. The fluctuation-dissipation theorem of Callen-Welton is also generalized to the fermionic dissipation (or fluctuation) which allows a transparent physical interpretation in terms of second quantized fermionic oscillators. This fermionic version of fluctuation-dissipation theorem may become relevant in the analyses of, for example, fermion radiation from a black hole and also supersymmetry at the early universe.Comment: 19 pages. Phys. Rev. E (in press

    Bosonization in d=2 from finite chiral determinants with a Gauss decomposition

    Get PDF
    We show how to bosonize two-dimensional non-abelian models using finite chiral determinants calculated from a Gauss decomposition. The calculation is quite straightforward and hardly more involved than for the abelian case. In particular, the counterterm AAˉA\bar A, which is normally motivated from gauge invariance and then added by hand, appears naturally in this approach.Comment: 4 pages, Revte

    Continuous non-perturbative regularization of QED

    Full text link
    We regularize in a continuous manner the path integral of QED by construction of a non-local version of its action by means of a regularized form of Dirac's δ\delta functions. Since the action and the measure are both invariant under the gauge group, this regularization scheme is intrinsically non-perturbative. Despite the fact that the non-local action converges formally to the local one as the cutoff goes to infinity, the regularized theory keeps trace of the non-locality through the appearance of a quadratic divergence in the transverse part of the polarization operator. This term which is uniquely defined by the choice of the cutoff functions can be removed by a redefinition of the regularized action. We notice that as for chiral fermions on the lattice, there is an obstruction to construct a continuous and non ambiguous regularization in four dimensions. With the help of the regularized equations of motion, we calculate the one particle irreducible functions which are known to be divergent by naive power counting at the one loop order.Comment: 23 pages, LaTeX, 5 Encapsulated Postscript figures. Improved and revised version, to appear in Phys. Rev.

    The BPHZ renormalised BV master equation and Two-loop Anomalies in Chiral Gravities

    Get PDF
    Anomalies and BRST invariance are governed, in the context of Lagrangian Batalin-Vilkovisky quantization, by the master equation, whose classical limit is (S,S)=0(S, S)=0. Using Zimmerman's normal products and the BPHZ renormalisation method, we obtain a corresponding local quantum operator equation, which is valid to all orders in perturbation theory. The formulation implies a calculational method for anomalies to all orders that is useful also outside the BV context and that remains completely within regularised perturbation theory. It makes no difference in principle whether the anomaly appears at one loop or at higher loops. The method is illustrated by computing the one- and two-loop anomalies in chiral W3W_3 gravity.Comment: 44 pages, LaTex. 4 figures, epsf. Discussion in section 4 extended, assorted small modifications, 3 references added. As it will be published in NP

    Global Anomalies in the Batalin Vilkovisky Quantization

    Get PDF
    The Batalin Vilkovisky (BV) quantization provides a general procedure for calculating anomalies associated to gauge symmetries. Recent results show that even higher loop order contributions can be calculated by introducing an appropriate regularization-renormalization scheme. However, in its standard form, the BV quantization is not sensible to quantum violations of the classical conservation of Noether currents, the so called global anomalies. We show here that the BV field antifield method can be extended in such a way that the Ward identities involving divergencies of global Abelian currents can be calculated from the generating functional, a result that would not be obtained by just associating constant ghosts to global symmetries. This extension, consisting of trivially gauging the global Abelian symmetries, poses no extra obstruction to the solution of the master equation, as it happens in the case of gauge anomalies. We illustrate the procedure with the axial model and also calculating the Adler Bell Jackiw anomaly.Comment: We emphasized the fact that our procedure only works for the case of Abelian global anomalies. Section 3 was rewritten and some references were added. 12 pages, LATEX. Revised version that will appear in Phys. Rev.

    Fermion Condensates of massless QED2QED_2 at Finite Density in non-trivial Topological Sectors

    Full text link
    Vacuum expectation values of products of local bilinears ψˉψ\bar\psi\psi are computed in massless QED2QED_2 at finite density. It is shown that chiral condensates exhibit an oscillatory inhomogeneous behaviour depending on the chemical potential. The use of a path-integral approach clarifies the connection of this phenomenon with the topological structure of the theory.Comment: 16 pages, no figures, To be published in Phys.Rev.
    corecore