157 research outputs found

    The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone

    Get PDF
    The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations

    The crack problem in bonded nonhomogeneous materials

    Get PDF
    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors

    Determination of the Heat Distribution in the Raw Cotton Packed in the Coil

    Get PDF
    As a result of experimental studies, a special mathematical model of raw cotton is developed. The effect of density change on the thermal conductivity coefficient is determined. A nonlinear differential equation of heat propagation in coils is obtained. The dependence of the density of raw cotton on the coil height is determined experimentally. The heat flux is intense propagating from denser layers of raw cotton to less dense ones. In a saturated form, the effect of density changes on the propagation of heat is less than in the coils. Pocket spontaneous heating occurs locally with sharp boundaries.An expression is found, which is the general solution of the mathematical model of heat propagation in raw cotton in coils, on the basis of which a number of physical real models can be constructed.The model allows to preliminarily give an estimation of the likely picture of the temperature field in the given microvolumes of raw cotton

    Plates and shells containing a surface crack under general loading conditions

    Get PDF
    The severity of the underlying assumptions of the line-spring model (LSM) are such that verification with three-dimensional solutions is necessary. Such comparisons show that the model is quite accurate, and therefore, its use in extensive parameter studies is justified. Investigations into the endpoint behavior of the line-spring model have led to important conclusions about the ability of the model to predict stresses in front of the crack tip. An important application of the LSM was to solve the contact plate bending problem. Here the flexibility of the model to allow for any crack shape is exploited. The use of displacement quantities as unknowns in the formulation of the problem leads to strongly singular integral equations, rather than singular integral equations which result from using displacement derivatives. The collocation method of solving the integral equations was found to be better and more convenient than the quadrature technique. Orthogonal polynomials should be used as fitting functions when using the LSM as opposed to simpler functions such as power series

    Plates and shells containing a surface crack under general loading conditions

    Get PDF
    Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient

    The moderating effect of project complexity on the relationship between organizational controls and cost estimation performance: A conceptual model

    Get PDF
    Cost overrun in construction projects is high and expected to rise. The improvement of cost estimation performance is vital as it provides a better chance for the construction projects to avoid cost blowouts. In this paper, an extensive literature review is conducted from online databases such as Web of Science, Scopus, and Google Scholar which focus on organization controls and its mechanisms to improve cost estimation performance in the construction industry. While many prior studies on cost estimation emphasized investigating cost estimation methods to improve the performance of cost estimation, less attention was given to organizational and project factors. Several studies have explored the effects of organizational control on performance but failed to include project complexity in the relationship between organizational controls and performance. Therefore, this paper conceptualizes the effect of organizational controls on cost estimation performance with project complexity as a moderator. This proposition suggests project complexity has advantages and disadvantages on organizational controls. Each control mechanism has its feature and effectiveness in high complexity projects. Hence, managers should select appropriate control mechanisms, such as input control and output control that have high effectiveness on the performance
    corecore